Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
PLoS Pathog ; 18(6): e1010606, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35687608

RESUMEN

As pathogenic bacteria become increasingly resistant to antibiotics, antimicrobials with mechanisms of action distinct from current clinical antibiotics are needed. Gram-negative bacteria pose a particular problem because they defend themselves against chemicals with a minimally permeable outer membrane and with efflux pumps. During infection, innate immune defense molecules increase bacterial vulnerability to chemicals by permeabilizing the outer membrane and occupying efflux pumps. Therefore, screens for compounds that reduce bacterial colonization of mammalian cells have the potential to reveal unexplored therapeutic avenues. Here we describe a new small molecule, D66, that prevents the survival of a human Gram-negative pathogen in macrophages. D66 inhibits bacterial growth under conditions wherein the bacterial outer membrane or efflux pumps are compromised, but not in standard microbiological media. The compound disrupts voltage across the bacterial inner membrane at concentrations that do not permeabilize the inner membrane or lyse cells. Selection for bacterial clones resistant to D66 activity suggested that outer membrane integrity and efflux are the two major bacterial defense mechanisms against this compound. Treatment of mammalian cells with D66 does not permeabilize the mammalian cell membrane but does cause stress, as revealed by hyperpolarization of mitochondrial membranes. Nevertheless, the compound is tolerated in mice and reduces bacterial tissue load. These data suggest that the inner membrane could be a viable target for anti-Gram-negative antimicrobials, and that disruption of bacterial membrane voltage without lysis is sufficient to enable clearance from the host.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa , Bacterias Gramnegativas , Animales , Antibacterianos/metabolismo , Antibacterianos/farmacología , Bacterias/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Bacterias Gramnegativas/metabolismo , Mamíferos , Ratones
2.
PLoS Pathog ; 16(12): e1009119, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33290418

RESUMEN

Infections caused by Gram-negative bacteria are difficult to fight because these pathogens exclude or expel many clinical antibiotics and host defense molecules. However, mammals have evolved a substantial immune arsenal that weakens pathogen defenses, suggesting the feasibility of developing therapies that work in concert with innate immunity to kill Gram-negative bacteria. Using chemical genetics, we recently identified a small molecule, JD1, that kills Salmonella enterica serovar Typhimurium (S. Typhimurium) residing within macrophages. JD1 is not antibacterial in standard microbiological media, but rapidly inhibits growth and curtails bacterial survival under broth conditions that compromise the outer membrane or reduce efflux pump activity. Using a combination of cellular indicators and super resolution microscopy, we found that JD1 damaged bacterial cytoplasmic membranes by increasing fluidity, disrupting barrier function, and causing the formation of membrane distortions. We quantified macrophage cell membrane integrity and mitochondrial membrane potential and found that disruption of eukaryotic cell membranes required approximately 30-fold more JD1 than was needed to kill bacteria in macrophages. Moreover, JD1 preferentially damaged liposomes with compositions similar to E. coli inner membranes versus mammalian cell membranes. Cholesterol, a component of mammalian cell membranes, was protective in the presence of neutral lipids. In mice, intraperitoneal administration of JD1 reduced tissue colonization by S. Typhimurium. These observations indicate that during infection, JD1 gains access to and disrupts the cytoplasmic membrane of Gram-negative bacteria, and that neutral lipids and cholesterol protect mammalian membranes from JD1-mediated damage. Thus, it may be possible to develop therapeutics that exploit host innate immunity to gain access to Gram-negative bacteria and then preferentially damage the bacterial cell membrane over host membranes.


Asunto(s)
Antibacterianos/farmacología , Membrana Celular/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Infecciones por Bacterias Gramnegativas , Inmunidad Innata , Animales , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/inmunología , Macrófagos/microbiología , Lípidos de la Membrana , Ratones , Ratones Endogámicos C57BL
3.
PLoS Pathog ; 14(6): e1007115, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29879224

RESUMEN

Bacterial efflux pumps transport small molecules from the cytoplasm or periplasm outside the cell. Efflux pump activity is typically increased in multi-drug resistant (MDR) pathogens; chemicals that inhibit efflux pumps may have potential for antibiotic development. Using an in-cell screen, we identified three efflux pump modulators (EPMs) from a drug diversity library. The screening platform uses macrophages infected with the human Gram-negative pathogen Salmonella enterica (Salmonella) to identify small molecules that prevent bacterial replication or survival within the host environment. A secondary screen for hit compounds that increase the accumulation of an efflux pump substrate, Hoechst 33342, identified three small molecules with activity comparable to the known efflux pump inhibitor PAßN (Phe-Arg ß-naphthylamide). The three putative EPMs demonstrated significant antibacterial activity against Salmonella within primary and cell culture macrophages and within a human epithelial cell line. Unlike traditional antibiotics, the three compounds did not inhibit bacterial growth in standard microbiological media. The three compounds prevented energy-dependent efflux pump activity in Salmonella and bound the AcrB subunit of the AcrAB-TolC efflux system with KDs in the micromolar range. Moreover, the EPMs display antibacterial synergy with antimicrobial peptides, a class of host innate immune defense molecules present in body fluids and cells. The EPMs also had synergistic activity with antibiotics exported by AcrAB-TolC in broth and in macrophages and inhibited efflux pump activity in MDR Gram-negative ESKAPE clinical isolates. Thus, an in-cell screening approach identified EPMs that synergize with innate immunity to kill bacteria and have potential for development as adjuvants to antibiotics.


Asunto(s)
Antibacterianos/farmacología , Carga Bacteriana/efectos de los fármacos , Dipéptidos/farmacología , Ensayos Analíticos de Alto Rendimiento , Macrófagos/efectos de los fármacos , Salmonella enterica/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Transporte Biológico , Células Cultivadas , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Macrófagos/microbiología , Proteínas de Transporte de Membrana/metabolismo , Ratones , Pruebas de Sensibilidad Microbiana
4.
Infect Immun ; 88(1)2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31611277

RESUMEN

To survive and replicate during infection, pathogens utilize different carbon and energy sources depending on the nutritional landscape of their host microenvironment. Salmonella enterica serovar Typhimurium is an intracellular bacterial pathogen that occupies diverse cellular niches. While it is clear that Salmonella Typhimurium requires access to glucose during systemic infection, data on the need for lipid metabolism are mixed. We report that Salmonella Typhimurium strains lacking lipid metabolism genes were defective for systemic infection of mice. Bacterial lipid import, ß-oxidation, and glyoxylate shunt genes were required for tissue colonization upon oral or intraperitoneal inoculation. In cultured macrophages, lipid import and ß-oxidation genes were required for bacterial replication and/or survival only when the cell culture medium was supplemented with nonessential amino acids. Removal of glucose from tissue culture medium further enhanced these phenotypes and, in addition, conferred a requirement for glyoxylate shunt genes. We also observed that Salmonella Typhimurium needs lipid metabolism genes in proinflammatory but not anti-inflammatory macrophages. These results suggest that during systemic infection, the Salmonella Typhimurium that relies upon host lipids to replicate is within proinflammatory macrophages that have access to amino acids but not glucose. An improved understanding of the host microenvironments in which pathogens have specific metabolic requirements may facilitate the development of targeted approaches to treatment.


Asunto(s)
Metabolismo de los Lípidos , Macrófagos/microbiología , Redes y Vías Metabólicas/genética , Salmonella typhimurium/crecimiento & desarrollo , Salmonella typhimurium/metabolismo , Aminoácidos/metabolismo , Animales , Glucosa/metabolismo , Ratones , Viabilidad Microbiana , Salmonelosis Animal/microbiología , Salmonelosis Animal/patología , Salmonella typhimurium/genética
5.
Antimicrob Agents Chemother ; 63(12)2019 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-31591121

RESUMEN

Salmonella enterica are natural bacterial pathogens of humans and animals that cause systemic infection or gastroenteritis. During systemic infection, Salmonella generally reside within professional phagocytes, typically macrophages, whereas gastroenteritis is caused by infection of epithelial cells. We are only beginning to understand which host pathways contribute to Salmonella survival in particular cell types. We therefore sought to identify compounds that perturb Salmonella-host interactions using a chemical genetics approach. We found one small molecule, D61, that reduces Salmonella load in cell-line and primary macrophages but has no effect on Salmonella growth in epithelial cells or rich medium. We determined that in macrophages D61 induces LC3II, a marker of the autophagy pathway, and promotes aggregation of LC3II near Salmonella We found that D61 antibacterial activity depends on the VPS34 complex and on ATG5. D61 also reduced Salmonella load in the spleens and livers of infected mice. Lastly, we demonstrate that D61 antibacterial activity in macrophages is synergistic with the antibiotic chloramphenicol, but that this synergy is largely independent of the known autophagy-stimulating activity of chloramphenicol. Thus, a small molecule has anti-bacterial activity specifically in macrophages and mice based on the promotion of bacterial degradation by autophagy.Importance Autophagy is a conserved cellular response to metabolic stress and to invading pathogens. For many pathogens, including Salmonella, autophagy can play a detrimental or beneficial role during infection depending on the cellular context. We combined chemical genetics with single cell analyses and murine infection to dissect host-pathogen interactions. We identified a small molecule that reduces bacterial load in macrophages by increasing autophagic flux. This compound also reduces bacterial colonization of tissues in infected mice. These observations demonstrate the potential therapeutic utility of stimulating autophagy in cells and animals to curb infection.

6.
Am J Pathol ; 187(1): 187-199, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27955815

RESUMEN

In the current study, we examined the ability of Salmonella enterica serovar Typhimurium to infect the central nervous system and cause meningitis following the natural route of infection in mice. C57BL/6J mice are extremely susceptible to systemic infection by Salmonella Typhimurium because of loss-of-function mutations in Nramp1 (SLC11A1), a phagosomal membrane protein that controls iron export from vacuoles and inhibits Salmonella growth in macrophages. Therefore, we assessed the ability of Salmonella to disseminate to the central nervous system (CNS) after oral infection in C57BL/6J mice expressing either wild-type (resistant) or mutant (susceptible) alleles of Nramp1. In both strains, oral infection resulted in focal meningitis and ventriculitis with recruitment of inflammatory monocytes to the CNS. In susceptible Nramp1-/- mice, there was a direct correlation between bacteremia and the number of bacteria in the brain, which was not observed in resistant Nramp1+/+ mice. A small percentage of Nramp1+/+ mice developed severe ataxia, which was associated with high bacterial loads in the CNS as well as clear histopathology of necrotizing vasculitis and hemorrhage in the brain. Thus, Nramp1 is not essential for Salmonella entry into the CNS or neuroinflammation, but may influence the mechanisms of CNS entry as well as the severity of meningitis.


Asunto(s)
Movimiento Celular , Meningitis/microbiología , Meningitis/patología , Monocitos/patología , Salmonella typhimurium/fisiología , Administración Oral , Animales , Ataxia/metabolismo , Ataxia/patología , Bacteriemia/complicaciones , Bacteriemia/microbiología , Bacteriemia/patología , Encéfalo/microbiología , Encéfalo/patología , Proteínas de Transporte de Catión/deficiencia , Proteínas de Transporte de Catión/metabolismo , Ventrículos Cerebrales/patología , Recuento de Colonia Microbiana , Encefalitis/complicaciones , Encefalitis/metabolismo , Encefalitis/patología , Inmunohistoquímica , Macrófagos/patología , Meningitis/complicaciones , Ratones Endogámicos C57BL , Infiltración Neutrófila , Salmonelosis Animal/complicaciones , Salmonelosis Animal/microbiología , Salmonelosis Animal/patología
7.
Cell Microbiol ; 19(1)2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27376507

RESUMEN

Salmonella Typhimurium is an intracellular bacterial pathogen that infects both epithelial cells and macrophages. Salmonella effector proteins, which are translocated into the host cell and manipulate host cell components, control the ability to replicate and/or survive in host cells. Due to the complexity and heterogeneity of Salmonella infections, there is growing recognition of the need for single-cell and live-cell imaging approaches to identify and characterize the diversity of cellular phenotypes and how they evolve over time. Here, we establish a pipeline for long-term (17 h) live-cell imaging of infected cells and subsequent image analysis methods. We apply this pipeline to track bacterial replication within the Salmonella-containing vacuole in epithelial cells, quantify vacuolar replication versus survival in macrophages and investigate the role of individual effector proteins in mediating these parameters. This approach revealed that dispersed bacteria can coalesce at later stages of infection, that the effector protein SseG influences the propensity for cytosolic hyper-replication in epithelial cells, and that while SteA only has a subtle effect on vacuolar replication in epithelial cells, it has a profound impact on infection parameters in immunocompetent macrophages, suggesting differential roles for effector proteins in different infection models.


Asunto(s)
Proteínas Bacterianas/metabolismo , Células Epiteliales/microbiología , Macrófagos/microbiología , Salmonella typhimurium/patogenicidad , Vacuolas/microbiología , Factores de Virulencia/metabolismo , Procesamiento de Imagen Asistido por Computador , Viabilidad Microbiana , Imagen Óptica , Salmonella typhimurium/crecimiento & desarrollo , Análisis de la Célula Individual
8.
Infect Immun ; 84(1): 47-55, 2016 01.
Artículo en Inglés | MEDLINE | ID: mdl-26459510

RESUMEN

During acute infection with bacteria, viruses or parasites, a fraction of macrophages engulf large numbers of red and white blood cells, a process called hemophagocytosis. Hemophagocytes persist into the chronic stage of infection and have an anti-inflammatory phenotype. Salmonella enterica serovar Typhimurium infection of immunocompetent mice results in acute followed by chronic infection, with the accumulation of hemophagocytes. The mechanism(s) that triggers a macrophage to become hemophagocytic is unknown, but it has been reported that the proinflammatory cytokine gamma interferon (IFN-γ) is responsible. We show that primary macrophages become hemophagocytic in the absence or presence of IFN-γ upon infection with Gram-negative bacterial pathogens or prolonged exposure to heat-killed Salmonella enterica, the Gram-positive bacterium Bacillus subtilis, or Mycobacterium marinum. Moreover, conserved microbe-associated molecular patterns are sufficient to stimulate macrophages to hemophagocytose. Purified bacterial lipopolysaccharide (LPS) induced hemophagocytosis in resting and IFN-γ-pretreated macrophages, whereas lipoteichoic acid and synthetic unmethylated deoxycytidine-deoxyguanosine dinucleotides, which mimic bacterial DNA, induced hemophagocytosis only in IFN-γ-pretreated macrophages. Chemical inhibition or genetic deletion of Toll-like receptor 4, a pattern recognition receptor responsive to LPS, prevented both Salmonella- and LPS-stimulated hemophagocytosis. Inhibition of NF-κB also prevented hemophagocytosis. These results indicate that recognition of microbial products by Toll-like receptors stimulates hemophagocytosis, a novel outcome of prolonged Toll-like receptor signaling, suggesting hemophagocytosis is a highly conserved innate immune response.


Asunto(s)
Eritrocitos/inmunología , Macrófagos/inmunología , Fagocitosis/inmunología , Salmonella typhimurium/inmunología , Receptor Toll-Like 4/inmunología , Células 3T3 , Animales , Bacillus subtilis/inmunología , Línea Celular , Interferón gamma/genética , Interferón gamma/inmunología , Lipopolisacáridos/inmunología , Ratones , Ratones Endogámicos C3H , Ratones Noqueados , Mycobacterium marinum/inmunología , FN-kappa B/antagonistas & inhibidores , Ácidos Teicoicos/inmunología , Receptor Toll-Like 2/inmunología , Receptor Toll-Like 4/antagonistas & inhibidores , Receptor Toll-Like 4/genética , Receptor Toll-Like 9/inmunología
9.
Infect Immun ; 83(6): 2290-9, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25824831

RESUMEN

The Gram-negative intracellular bacterium Salmonella enterica serovar Typhimurium causes persistent systemic inflammatory disease in immunocompetent mice. Following oral inoculation with S. Typhimurium, mice develop a hematopathological syndrome akin to typhoid fever with splenomegaly, microcytic anemia, extramedullary erythropoiesis, and increased hemophagocytic macrophages in the bone marrow, liver, and spleen. Additionally, there is marked loss of iron from the spleen, an unanticipated result, given the iron sequestration reported in anemia of inflammatory disease. To establish why tissue iron does not accumulate, we evaluated multiple measures of pathology for 4 weeks following oral infection in mice. We demonstrate a quantitative decrease in splenic iron following infection despite increased numbers of splenic phagocytes. Infected mice have increased duodenal expression of the iron exporter ferroportin-1, consistent with increased uptake of dietary iron. Liver and splenic macrophages also express high levels of ferroportin-1. These observations indicate that splenic and hepatic macrophages export iron during S. Typhimurium infection, in contrast to macrophage iron sequestration observed in anemia of inflammatory disease. Tissue macrophage export of iron occurs concurrent with high serum concentrations of interferon gamma (IFN-γ) and interleukin 12 (IL-12). In individual mice, high concentrations of both proinflammatory (tumor necrosis factor alpha [TNF-α]) and anti-inflammatory (IL-10) cytokines in serum correlate with increased tissue bacterial loads throughout 4 weeks of infection. These in vivo observations are consistent with previous cell culture studies and suggest that the relocation of iron from tissue macrophages during infection may contribute to anemia and also to host survival of acute S. Typhimurium infection.


Asunto(s)
Anemia/etiología , Proteínas de Transporte de Catión/metabolismo , Hierro/metabolismo , Salmonelosis Animal/metabolismo , Animales , Proteínas de Transporte de Catión/genética , Duodeno/metabolismo , Femenino , Masculino , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Salmonelosis Animal/complicaciones , Salmonella typhimurium , Bazo
10.
Mol Microbiol ; 93(6): 1314-26, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25081030

RESUMEN

Bacteria harbour both ferrous and ferric iron transporters. We now report that infection of macrophages and mice with a Salmonella enterica Typhimurium strain containing an inactivated feoB-encoded ferrous iron transporter results in increased bacterial replication, compared to infection with wild type. Inactivation of other cation transporters, SitABCD or MntH, did not increase bacterial replication. The feoB mutant strain does not have an intrinsically faster growth rate. Instead, increased replication correlated with increased expression in macrophages of the fepB-encoded bacterial ferric iron transporter and also required siderophores, which capture ferric iron. Co-infection of mice with wild type and a feoB mutant strain yielded a different outcome: FeoB is clearly required for tissue colonization. In co-infected primary mouse macrophages, FeoB is required for S. Typhimurium replication if the macrophages were IFNγ treated and contain phagocytosed erythrocytes, a model for haemophagocytosis. Haemophagocytes are macrophages that have engulfed erythrocytes and/or leucocytes and can harbour Salmonella in mice. These observations suggest that Salmonella acquires ferrous iron from haemophagocytic macrophages.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Catión/metabolismo , Hierro/metabolismo , Macrófagos/microbiología , Salmonelosis Animal/microbiología , Salmonella typhimurium/crecimiento & desarrollo , Animales , Proteínas Bacterianas/genética , Proteínas de Transporte de Catión/genética , Interferón gamma/farmacología , Hígado/microbiología , Macrófagos/efectos de los fármacos , Ratones , Mutación , Salmonella typhimurium/patogenicidad , Sideróforos/metabolismo , Bazo/microbiología , Virulencia
11.
mSphere ; 9(3): e0077223, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38445864

RESUMEN

New molecular approaches to disrupting bacterial infections are needed. The bacterial cell membrane is an essential structure with diverse potential lipid and protein targets for antimicrobials. While rapid lysis of the bacterial cell membrane kills bacteria, lytic compounds are generally toxic to whole animals. In contrast, compounds that subtly damage the bacterial cell membrane could disable a microbe, facilitating pathogen clearance by the immune system with limited compound toxicity. A previously described small molecule, D66, terminates Salmonella enterica serotype Typhimurium (S. Typhimurium) infection of macrophages and reduces tissue colonization in mice. The compound dissipates bacterial inner membrane voltage without rapid cell lysis under broth conditions that permeabilize the outer membrane or disable efflux pumps. In standard media, the cell envelope protects Gram-negative bacteria from D66. We evaluated the activity of D66 in Gram-positive bacteria because their distinct envelope structure, specifically the absence of an outer membrane, could facilitate mechanism of action studies. We observed that D66 inhibited Gram-positive bacterial cell growth, rapidly increased Staphylococcus aureus membrane fluidity, and disrupted membrane voltage while barrier function remained intact. The compound also prevented planktonic staphylococcus from forming biofilms and a disturbed three-dimensional structure in 1-day-old biofilms. D66 furthermore reduced the survival of staphylococcal persister cells and of intracellular S. aureus. These data indicate that staphylococcal cells in multiple growth states germane to infection are susceptible to changes in lipid packing and membrane conductivity. Thus, agents that subtly damage bacterial cell membranes could have utility in preventing or treating disease.IMPORTANCEAn underutilized potential antibacterial target is the cell membrane, which supports or associates with approximately half of bacterial proteins and has a phospholipid makeup distinct from mammalian cell membranes. Previously, an experimental small molecule, D66, was shown to subtly damage Gram-negative bacterial cell membranes and to disrupt infection of mammalian cells. Here, we show that D66 increases the fluidity of Gram-positive bacterial cell membranes, dissipates membrane voltage, and inhibits the human pathogen Staphylococcus aureus in several infection-relevant growth states. Thus, compounds that cause membrane damage without lysing cells could be useful for mitigating infections caused by S. aureus.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Humanos , Animales , Ratones , Fluidez de la Membrana , Staphylococcus , Antibacterianos/farmacología , Infecciones Estafilocócicas/microbiología , Salmonella typhimurium , Lípidos , Mamíferos
12.
Infect Immun ; 81(11): 4063-70, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23959718

RESUMEN

Most bacterial pathogens require iron to grow and colonize host tissues. The Gram-negative bacterium Salmonella enterica serovar Typhimurium causes a natural systemic infection of mice that models acute and chronic human typhoid fever. S. Typhimurium resides in tissues within cells of the monocyte lineage, which limit pathogen access to iron, a mechanism of nutritional immunity. The primary ferric iron import system encoded by Salmonella is the siderophore ABC transporter FepBDGC. The Fep system has a known role in acute infection, but it is unclear whether ferric iron uptake or the ferric iron binding siderophores enterobactin and salmochelin are required for persistent infection. We defined the role of the Fep iron transporter and siderophores in the replication of Salmonella in macrophages and in mice that develop acute followed by persistent infections. Replication of wild-type and iron transporter mutant Salmonella strains was quantified in cultured macrophages, fecal pellets, and host tissues in mixed- and single-infection experiments. We show that deletion of fepB attenuated Salmonella replication and colonization within macrophages and mice. Additionally, the genes required to produce and transport enterobactin and salmochelin across the outer membrane receptors, fepA and iroN, are needed for colonization of all tissues examined. However, salmochelin appears to be more important than enterobactin in the colonization of the spleen and liver, both sites of dissemination. Thus, the FepBDGC ferric iron transporter and the siderophores enterobactin and salmochelin are required by Salmonella to evade nutritional immunity in macrophages and cause persistent infection in mice.


Asunto(s)
Enterobactina/metabolismo , Macrófagos/microbiología , Proteínas de Transporte de Membrana/metabolismo , Salmonelosis Animal/microbiología , Salmonella typhimurium/patogenicidad , Factores de Virulencia/metabolismo , Animales , Línea Celular , Modelos Animales de Enfermedad , Femenino , Eliminación de Gen , Hígado/microbiología , Masculino , Proteínas de Transporte de Membrana/genética , Ratones , Salmonella typhimurium/genética , Bazo/microbiología , Virulencia , Factores de Virulencia/genética
13.
Mol Microbiol ; 84(2): 296-309, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22375627

RESUMEN

Mechanisms by which Salmonella establish chronic infections are not well understood. Microbes respond to stress by importing or producing compatible solutes, small molecules that stabilize proteins and lipids. The Salmonella locus opuABCD (also called OpuC) encodes a predicted importer of the compatible solute glycine betaine. Under stress conditions, if glycine betaine cannot be imported, Salmonella enterica produce the disaccharide trehalose, a highly effective compatible solute. We demonstrate that strains lacking opuABCD accumulate more trehalose under stress conditions than wild-type strains. ΔopuABCD mutant strains are more resistant to high-salt, low-pH and -hydrogen peroxide, conditions that mimic aspects of innate immunity, in a trehalose-dependent manner. In addition, ΔopuABCD mutant strains require the trehalose production genes to out-compete wild-type strains in mice and macrophages. These data suggest that in the absence of opuABCD, trehalose accumulation increases bacterial resistance to stress in broth and mice. Thus, opuABCD reduces bacterial colonization via a mechanism that limits trehalose production. Mechanisms by which microbes limit disease may reveal novel pathways as therapeutic targets.


Asunto(s)
Betaína/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidad , Estrés Fisiológico , Trehalosa/metabolismo , Animales , Modelos Animales de Enfermedad , Eliminación de Gen , Peróxido de Hidrógeno/toxicidad , Concentración de Iones de Hidrógeno , Macrófagos/microbiología , Proteínas de Transporte de Membrana/genética , Ratones , Salinidad , Salmonelosis Animal , Salmonella typhimurium/efectos de los fármacos , Sales (Química)/toxicidad
14.
mBio ; : e0249223, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37921493

RESUMEN

New approaches for combating microbial infections are needed. One strategy for disrupting pathogenesis involves developing compounds that interfere with bacterial virulence. A critical molecular determinant of virulence for Gram-negative bacteria are efflux pumps of the resistance-nodulation-division family, which includes AcrAB-TolC. We previously identified small molecules that bind AcrB, inhibit AcrAB-TolC, and do not appear to damage membranes. These efflux pump modulators (EPMs) were discovered in an in-cell screening platform called SAFIRE (Screen for Anti-infectives using Fluorescence microscopy of IntracellulaR Enterobacteriaceae). SAFIRE identifies compounds that disrupt the growth of a Gram-negative human pathogen, Salmonella enterica serotype Typhimurium (S. Typhimurium), in macrophages. We used medicinal chemistry to iteratively design ~200 EPM35 analogs and test them for activity in SAFIRE, generating compounds with nanomolar potency. Analogs were demonstrated to bind AcrB in a substrate binding pocket by cryo-electron microscopy. Despite having amphipathic structures, the EPM analogs do not disrupt membrane voltage, as monitored by FtsZ localization to the cell septum. The EPM analogs had little effect on bacterial growth in standard Mueller Hinton Broth. However, under broth conditions that mimic the micro-environment of the macrophage phagosome, acrAB is required for growth, the EPM analogs are bacteriostatic, and the EPM analogs increase the potency of antibiotics. These data suggest that under macrophage-like conditions, the EPM analogs prevent the export of a toxic bacterial metabolite(s) through AcrAB-TolC. Thus, compounds that bind AcrB could disrupt infection by specifically interfering with the export of bacterial toxic metabolites, host defense factors, and/or antibiotics.IMPORTANCEBacterial efflux pumps are critical for resistance to antibiotics and for virulence. We previously identified small molecules that inhibit efflux pumps (efflux pump modulators, EPMs) and prevent pathogen replication in host cells. Here, we used medicinal chemistry to increase the activity of the EPMs against pathogens in cells into the nanomolar range. We show by cryo-electron microscopy that these EPMs bind an efflux pump subunit. In broth culture, the EPMs increase the potency (activity), but not the efficacy (maximum effect), of antibiotics. We also found that bacterial exposure to the EPMs appear to enable the accumulation of a toxic metabolite that would otherwise be exported by efflux pumps. Thus, inhibitors of bacterial efflux pumps could interfere with infection not only by potentiating antibiotics, but also by allowing toxic waste products to accumulate within bacteria, providing an explanation for why efflux pumps are needed for virulence in the absence of antibiotics.

15.
bioRxiv ; 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37786697

RESUMEN

New approaches for combatting microbial infections are needed. One strategy for disrupting pathogenesis involves developing compounds that interfere with bacterial virulence. A critical molecular determinant of virulence for Gram-negative bacteria are efflux pumps of the resistance-nodulation-division (RND) family, which includes AcrAB-TolC. We previously identified small molecules that bind AcrB, inhibit AcrAB-TolC, and do not appear to damage membranes. These efflux pump modulators (EPMs) were discovered in an in-cell screening platform called SAFIRE (Screen for Anti-infectives using Fluorescence microscopy of IntracellulaR Enterobacteriaceae). SAFIRE identifies compounds that disrupt the growth of a Gram-negative human pathogen, Salmonella enterica serotype Typhimurium (S. Typhimurium) in macrophages. We used medicinal chemistry to iteratively design ~200 EPM35 analogs and test them for activity in SAFIRE, generating compounds with nanomolar potency. Analogs were demonstrated to bind AcrB in a substrate binding pocket by cryo-electron microscopy (cryo-EM). Despite having amphipathic structures, the EPM analogs do not disrupt membrane voltage, as monitored by FtsZ localization to the cell septum. The EPM analogs had little effect on bacterial growth in standard Mueller Hinton Broth. However, under broth conditions that mimic the micro-environment of the macrophage phagosome, acrAB is required for growth, the EPM analogs are bacteriostatic, and increase the potency of antibiotics. These data suggest that under macrophage-like conditions the EPM analogs prevent the export of a toxic bacterial metabolite(s) through AcrAB-TolC. Thus, compounds that bind AcrB could disrupt infection by specifically interfering with the export of bacterial toxic metabolites, host defense factors, and/or antibiotics.

16.
Infect Immun ; 80(10): 3642-9, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22868497

RESUMEN

Histiocytes are white blood cells of the monocytic lineage and include macrophages and dendritic cells. In patients with a variety of infectious and noninfectious inflammatory disorders, histiocytes can engulf nonapoptotic leukocytes and nonsenescent erythrocytes and thus become hemophagocytes. We report here the identification and characterization of splenic hemophagocytes in a natural model of murine typhoid fever. The development of a flow-cytometric method allowed us to identify hemophagocytes based on their greater than 6N (termed 6N+) DNA content. Characterization of the 6N+ population from infected mice showed that these cells consist primarily of macrophages rather than dendritic cells and contain T lymphocytes, consistent with hemophagocytosis. Most 6N+ macrophages from Salmonella enterica serovar Typhimurium-infected mice contain intact DNA, consistent with hemophagocytosis. In contrast, most 6N+ macrophages from control mice or mice infected with a different bacterial pathogen, Yersinia pseudotuberculosis, contain damaged DNA. Finally, 6N+ splenic macrophages from S. Typhimurium-infected mice express markers consistent with an anti-inflammatory M2 activation state rather than a classical M1 activation state. We conclude that macrophages are the predominant splenic hemophagocyte in this disease model but not in Y. pseudotuberculosis-infected mice. The anti-inflammatory phenotype of hemophagocytic macrophages suggests that these cells contribute to the shift from acute to chronic infection.


Asunto(s)
Inflamación/inmunología , Macrófagos/fisiología , Fagocitosis/fisiología , Fiebre Tifoidea/patología , Animales , Apoptosis , Modelos Animales de Enfermedad , Citometría de Flujo , Inmunofenotipificación , Macrófagos/clasificación , Ratones , Salmonella typhimurium/inmunología , Bazo/citología , Bazo/inmunología , Factores de Tiempo , Fiebre Tifoidea/inmunología , Yersinia pseudotuberculosis/inmunología , Infecciones por Yersinia pseudotuberculosis/inmunología
17.
mBio ; 13(5): e0179022, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36135367

RESUMEN

Gram-negative bacteria have a robust cell envelope that excludes or expels many antimicrobial agents. However, during infection, host soluble innate immune factors permeabilize the bacterial outer membrane. We identified two small molecules that exploit outer membrane damage to access the bacterial cell. In standard microbiological media, neither compound inhibited bacterial growth nor permeabilized bacterial outer membranes. In contrast, at micromolar concentrations, JAV1 and JAV2 enabled the killing of an intracellular human pathogen, Salmonella enterica serovar Typhimurium. S. Typhimurium is a Gram-negative bacterium that resides within phagosomes of cells from the monocyte lineage. Under broth conditions that destabilized the lipopolysaccharide layer, JAV2 permeabilized the bacterial inner membrane and was rapidly bactericidal. In contrast, JAV1 activity was more subtle: JAV1 increased membrane fluidity, altered reduction potential, and required more time than JAV2 to disrupt the inner membrane barrier and kill bacteria. Both compounds interacted with glycerophospholipids from Escherichia coli total lipid extract-based liposomes. JAV1 preferentially interacted with cardiolipin and partially relied on cardiolipin production for activity, whereas JAV2 generally interacted with lipids and had modest affinity for phosphatidylglycerol. In mammalian cells, neither compound significantly altered mitochondrial membrane potential at concentrations that killed S. Typhimurium. Instead, JAV1 and JAV2 became trapped within acidic compartments, including macrophage phagosomes. Both compounds improved survival of S. Typhimurium-infected Galleria mellonella larvae. Together, these data demonstrate that JAV1 and JAV2 disrupt bacterial inner membranes by distinct mechanisms and highlight how small, lipophilic, amine-substituted molecules can exploit host soluble innate immunity to facilitate the killing of intravesicular pathogens. IMPORTANCE Innovative strategies for developing new antimicrobials are needed. Combining our knowledge of host-pathogen interactions and relevant drug characteristics has the potential to reveal new approaches to treating infection. We identified two compounds with antibacterial activity specific to infection and with limited host cell toxicity. These compounds appeared to exploit host innate immunity to access the bacterium and differentially damage the bacterial inner membrane. Further, both compounds accumulated within Salmonella-containing and other acidic vesicles, a process known as lysosomal trapping, which protects the host and harms the pathogen. The compounds also increased host survival in an insect infection model. This work highlights the ability of host innate immunity to enable small molecules to act as antibiotics and demonstrates the feasibility of antimicrobial targeting of the inner membrane. Additionally, this study features the potential use of lysosomal trapping to enhance the activities of compounds against intravesicular pathogens.


Asunto(s)
Cardiolipinas , Infecciones por Salmonella , Animales , Humanos , Cardiolipinas/metabolismo , Lipopolisacáridos/metabolismo , Liposomas/metabolismo , Infecciones por Salmonella/metabolismo , Salmonella typhimurium/metabolismo , Fagosomas/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Glicerofosfolípidos/metabolismo , Escherichia coli/metabolismo , Aminas/metabolismo , Mamíferos/metabolismo
18.
mBio ; 12(5): e0180121, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34634935

RESUMEN

Rates of antibiotic and multidrug resistance are rapidly rising, leaving fewer options for successful treatment of bacterial infections. In addition to acquiring genetic resistance, many pathogens form persister cells, form biofilms, and/or cause intracellular infections that enable bacteria to withstand antibiotic treatment and serve as a source of recurring infections. JD1 is a small molecule previously shown to kill Gram-negative bacteria under conditions where the outer membrane and/or efflux pumps are disrupted. We show here that JD1 rapidly disrupts membrane potential and kills Gram-positive bacteria. Further investigation revealed that treatment with JD1 disrupts membrane barrier function and causes aberrant membranous structures to form. Additionally, exposure to JD1 reduced the number of Staphylococcus aureus and Staphylococcus epidermidis viable persister cells within broth culture by up to 1,000-fold and reduced the matrix and cell volume of biofilms that had been established for 24 h. Finally, we show that JD1 reduced the number of recoverable methicillin-resistant S. aureus organisms from infected cells. These observations indicate that JD1 inhibits staphylococcal cells in difficult-to-treat growth stages as well as, or better than, current clinical antibiotics. Thus, JD1 shows the importance of testing compounds under conditions that are relevant to infection, demonstrates the utility that membrane-targeting compounds have against multidrug-resistant bacteria, and indicates that small molecules that target bacterial cell membranes may serve as potent broad-spectrum antibacterials. IMPORTANCE Untreatable bacterial infections are a critical public health care issue. In addition to increasing antibiotic resistance, bacteria that are in slow-growing or nongrowing states, or that live inside mammalian cells, are typically insensitive to clinical antibiotics and therefore difficult to eradicate. Bacterial cell membranes have been proposed as potential novel antibiotic targets that may be vulnerable in these difficult to treat cell types because cell membranes are always present and performing essential functions. The small molecule JD1 was previously shown to disrupt Gram-negative bacterial cell membranes. Here, we show that it also disrupts the cell membrane of Gram-positive bacteria and reduces viable bacteria within persister populations, biofilms, and mammalian cells. These observations demonstrate the importance of testing novel compounds under infection-relevant conditions, because their potency against rapidly growing cells may not reveal their full potential.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Staphylococcus/efectos de los fármacos , Animales , Membrana Celular/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas , Staphylococcus aureus/efectos de los fármacos
19.
Microbiol Spectr ; 9(1): e0027521, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34190602

RESUMEN

New classes of antibiotics are needed to fight bacterial infections, and repurposing existing drugs as antibiotics may enable rapid deployment of new treatments. Screens for antibacterials have been traditionally performed in standard laboratory media, but bacterial pathogens experience very different environmental conditions during infection, including nutrient limitation. To introduce the next generation of researchers to modern drug discovery methods, we developed a course-based undergraduate research experience (CURE) in which undergraduate students screened a library of FDA-approved drugs for their ability, in a nutrient-poor medium, to prevent the growth of the human Gram-negative bacterial pathogen Salmonella enterica serovar Typhimurium. The nine drugs identified all disrupt DNA metabolism in bacteria and eukaryotes. One of the hit compounds, capecitabine, is a well-tolerated oncology drug that is administered orally, a preferred treatment route. We demonstrated that capecitabine is more effective at inhibiting S. Typhimurium growth in nutrient-limited than in standard rich microbiological broth, an explanation for why the antibiotic activity of this compound has not been previously recognized. Capecitabine is enzymatically converted to the active pyrimidine analogue, fluorouracil (5-FU), and Gram-positive bacteria, including Staphylococcus aureus, are significantly more sensitive to 5-FU than Gram-negative bacteria. We therefore tested capecitabine for efficacy in a murine model of S. aureus peritonitis. Oral capecitabine administration reduced the colonization of tissues and increased animal survival in a dose-responsive manner. Since capecitabine is inexpensive, orally available, and relatively safe, it may have utility for treatment of intractable Gram-positive bacterial infections. IMPORTANCE As bacterial infections become increasingly insensitive to antibiotics, whether established, off-patent drugs could treat infections becomes an important question. At the same time, basic research has revealed that during infection, mammals starve pathogens for nutrients and, in response, bacteria dramatically alter their biology. Therefore, it may be fruitful to search for drugs that could be repurposed as antibiotics using bacteria grown with limited nutrients. This approach, executed with undergraduate student researchers, identified nine drugs known to interfere with the production and/or function of DNA. We further explored one of these drugs, capecitabine, a well-tolerated human oncology drug. Oral administration of capecitabine reduced infection with the human pathogen Staphylococcus aureus and increased survival in mice. These data suggest that capecitabine has potential as a therapy for patients with otherwise untreatable bacterial infections.


Asunto(s)
Antibacterianos/administración & dosificación , Capecitabina/administración & dosificación , Fluorouracilo/administración & dosificación , Salmonella typhimurium/efectos de los fármacos , Infecciones Estafilocócicas/tratamiento farmacológico , Administración Oral , Animales , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Profármacos/administración & dosificación , Salmonella typhimurium/fisiología , Infecciones Estafilocócicas/microbiología
20.
Infect Immun ; 78(8): 3369-77, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20515933

RESUMEN

Salmonella enterica serotype Typhimurium is a natural pathogen of mice, which acquire the bacteria orally and develop systemic acute infections that can become subacute to chronic infections. S. Typhimurium can reside within hemophagocytic macrophages (HMs) in SV129S6 mice, an Slc11a1/Nramp1(+/+) inbred strain. HMs are activated macrophages which have ingested viable hematopoietic cells and are a key characteristic of infectious and inflammatory diseases. Here we show that modest S. Typhimurium replication in HMs begins at 18 h postinfection, while activated macrophages kill the bacteria. For bacterial replication to occur, the phagocytosed viable cells must be grown to a low cell density and the multiplicity of infection must be low. HMs are able to kill phagocytosed Escherichia coli, produce reactive nitrogen species, and retain S. Typhimurium within membrane-bound vesicles. S. Typhimurium does not rescue E. coli upon coinfection of HMs. This indicates that S. Typhimurium does not cause HMs to become permissive for other microbes; rather, S. Typhimurium is especially equipped to survive within HMs. Two type three secretion systems (T3SS) encoded by S. Typhimurium are required for replication within HMs. While the T3SS within Salmonella pathogenicity island 2 (SPI-2) has been previously shown to be important for bacterial survival in cells, a role for SPI-1 in replication in macrophages has not been reported. The requirement for SPI-1 in HMs may help explain the role of SPI-1 during long-term colonization of mice.


Asunto(s)
Proteínas Bacterianas/fisiología , Macrófagos/microbiología , Proteínas de Transporte de Membrana/fisiología , Salmonella typhimurium/patogenicidad , Factores de Virulencia/fisiología , Animales , Células Cultivadas , Vesículas Citoplasmáticas/microbiología , Vesículas Citoplasmáticas/ultraestructura , Escherichia coli/inmunología , Escherichia coli/patogenicidad , Genes Bacterianos , Islas Genómicas , Macrófagos/inmunología , Ratones , Viabilidad Microbiana , Microscopía Electrónica de Transmisión , Óxido Nítrico/biosíntesis , Salmonella typhimurium/crecimiento & desarrollo , Salmonella typhimurium/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA