Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chimia (Aarau) ; 71(4): 236-240, 2017 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-28446343

RESUMEN

Nanofiber production by electrospinning has made great progress over the past two decades. Recently the research area was revolutionized by a novel post-processing approach. By cutting the endless and intertwined nanofibers into short pieces, it is now possible to reassemble them into interconnected 3D structures. Such highly porous structures are built from dispersed short nanofibers by freeze-casting. This solid templating process controls the structures' ultimate properties and architecture in terms of primary and secondary pores below 5 µm and between 10 and 300 µm, respectively. The objective of this review is to provide insight into this young field of research, in particular highlighting the processing steps, materials and current applications, from scaffolds for tissue engineering, acoustics, sensors and catalyst supports to filtration.

2.
ACS Appl Mater Interfaces ; 10(10): 9069-9076, 2018 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-29481046

RESUMEN

Ultralight nanofiber aerogels (NFAs) or nanofiber sponges are a truly three-dimensional derivative of the intrinsically flat electrospun nanofiber mats or membranes (NFMs). Here we investigated the potential of such materials for particle or aerosol filtration because particle filtration is a major application of NFMs. Ultralight NFAs were synthesized from electrospun nanofibers using a solid-templating technique. These materials had a tunable hierarchical cellular open-pore structure. We observed high filtration efficiencies of up to 99.999% at the most penetrating particle size. By tailoring the porosity of the NFAs through the processing parameters, we were able to adjust the number of permeated particles by a factor of 1000 and the pressure drop by a factor of 9. These NFAs acted as a deep-bed filter, and they were capable of handling high dust loadings without any indication of performance loss or an increase in the pressure drop. When the face velocity was increased from 0.75 to 6 cm s-1, the filtration efficiency remained high within a factor of 1.1-10. Both characteristics were in contrast to the behavior of two commercial NFM particle filters, which showed significant increases in the pressure drop with the filtration time as well as a susceptibility against high face velocities by a factor of 105.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA