RESUMEN
The ordered arrangement of cells and extracellular matrix facilitates the seamless transmission of electrical signals along axons in the spinal cord and peripheral nerves. Therefore, restoring tissue geometry is crucial for neural regeneration. This study presents a novel method using proteins derived from the human amniotic membrane, which is modified with photoresponsive groups, to produce cryogels with aligned porosity. Freeze-casting was used to produce cryogels with longitudinally aligned pores, while cryogels with randomly distributed porosity were used as the control. The cryogels exhibited remarkable injectability and shape-recovery properties, essential for minimally invasive applications. Different tendencies in proliferation and differentiation were evident between aligned and random cryogels, underscoring the significance of the scaffold's microstructure in directing the behaviour of neural stem cells (NSC). Remarkably, aligned cryogels facilitated extensive cellular infiltration and migration, contrasting with NSC cultured on isotropic cryogels, which predominantly remained on the scaffold's surface throughout the proliferation experiment. Significantly, the proliferation assay demonstrated that on day 7, the aligned cryogels contained eight times more cells compared to the random cryogels. Consistent with the proliferation experiments, NSC exhibited the ability to differentiate into neurons within the aligned scaffolds and extend neurites longitudinally. In addition, differentiation assays showed a four-fold increase in the expression of neural markers in the cross-sections of the aligned cryogels. Conversely, the random cryogels exhibited minimal presence of cell bodies and extensions. The presence of synaptic vesicles on the anisotropic cryogels indicates the formation of functional synaptic connections, emphasizing the importance of the scaffold's microstructure in guiding neuronal reconnection.
Asunto(s)
Amnios , Diferenciación Celular , Proliferación Celular , Criogeles , Regeneración Nerviosa , Células-Madre Neurales , Andamios del Tejido , Amnios/química , Criogeles/química , Humanos , Células-Madre Neurales/citología , Andamios del Tejido/química , Animales , Porosidad , Ingeniería de Tejidos , Células CultivadasRESUMEN
One of the foremost targets in the advancement of biomaterials to engineer vascularized tissues is not only to replicate the composition of the intended tissue but also to create thicker structures incorporating a vascular network for adequate nutrients and oxygen supply. For the first time, to the best of current knowledge, a clinically relevant biomaterial is developed, demonstrating that hydrogels made from the human decellularized extracellular matrix can exhibit robust mechanical properties (in the kPa range) and angiogenic capabilities simultaneously. These properties enable the culture and organization of human umbilical vein endothelial cells into tubular structures, maintaining their integrity for 14 days in vitro without the need for additional polymers or angiogenesis-related factors. This is achieved by repurposing the placenta chorionic membrane (CM), a medical waste with an exceptional biochemical composition, into a valuable resource for bioengineering purposes. After decellularization, the CM underwent chemical modification with methacryloyl groups, giving rise to methacrylated CM (CMMA). CMMA preserved key proteins, as well as glycosaminoglycans. The resulting hydrogels rapidly photopolymerize and have enhanced strength and customizable mechanical properties. Furthermore, they demonstrate angio-vasculogenic competence in vitro and in vivo, holding significant promise as a humanized platform for the engineering of vascularized tissues.
RESUMEN
In the pursuit of advancing neural tissue regeneration, biomaterial scaffolds have emerged as promising candidates, offering potential solutions for nerve disruptions. Among these scaffolds, multichannel hydrogels, characterized by meticulously designed micrometer-scale channels, stand out as instrumental tools for guiding axonal growth and facilitating cellular interactions. This study explores the innovative application of human amniotic membranes modified with methacryloyl domains (AMMA) in neural stem cell (NSC) culture. AMMA hydrogels, possessing a tailored softness resembling the physiological environment, are prepared in the format of multichannel scaffolds to simulate native-like microarchitecture of nerve tracts. Preliminary experiments on AMMA hydrogel films showcase their potential for neural applications, demonstrating robust adhesion, proliferation, and differentiation of NSCs without the need for additional coatings. Transitioning into the 3D realm, the multichannel architecture fosters intricate neuronal networks guiding neurite extension longitudinally. Furthermore, the presence of synaptic vesicles within the cellular arrays suggests the establishment of functional synaptic connections, underscoring the physiological relevance of the developed neuronal networks. This work contributes to the ongoing efforts to find ethical, clinically translatable, and functionally relevant approaches for regenerative neuroscience.
Asunto(s)
Amnios , Hidrogeles , Regeneración Nerviosa , Células-Madre Neurales , Andamios del Tejido , Hidrogeles/química , Amnios/química , Humanos , Células-Madre Neurales/citología , Regeneración Nerviosa/efectos de los fármacos , Regeneración Nerviosa/fisiología , Andamios del Tejido/química , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ingeniería de Tejidos/métodos , Animales , Adhesión Celular/efectos de los fármacos , Células Cultivadas , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacologíaRESUMEN
In the past few years researchers have witnessed a paradigm shift in the development of biomaterials for drug discovery, tissue engineering, and regenerative medicine. After the great advances resulting from the transition of the 2D to the 3D, the new focus has been to increase the clinical relevance of such systems, as well as avoid the use of animals, by developing platforms that better replicate the human physiology in vitro. In this sense, we envisage the use of human matrices extracted from ethically sourced and readily available tissues as an optimal and promising alternative to currently used approaches. Hereupon, we report for the first time the chemical modification of human ECM proteins from the amniotic membrane (AM) with photoresponsive groups to produce bioinks and hydrogel precursors to engineer customizable platforms that are representative of native tissues and capable of supporting long-term cell culture. Our results demonstrated an efficient decellularization, liquefaction and functionalization of AM-derived ECM with methacryloyl domains (AMMA), with production of stable and versatile hydrogels. Mechanical characterization evidenced an increased compression strength as a function of methacrylation degree and decellularized ECM concentration. Three-dimensional (3D) stem cell culture in the AMMA hydrogels resulted in viable and proliferative cells up to 7 days; moreover, the mouldable character of the hydrogel precursors permits the processing of patterned hydrogel constructs allowing the control over cellular alignment and elongation, or microgels with highly tunable shape.
Asunto(s)
Amnios , Matriz Extracelular , Animales , Técnicas de Cultivo de Célula , Matriz Extracelular/química , Humanos , Hidrogeles/análisis , Ingeniería de Tejidos/métodosRESUMEN
Perinatal tissues are an abundant source of human extracellular matrix proteins, growth factors and stem cells with proved potential use in a wide range of therapeutic applications. Due to their placental origin, these tissues possess unique biological properties, including being angiogenic, anti-inflammatory, anti-fibrotic, anti-microbial and immune privileged. Additionally, as a temporary organ, placenta is usually discarded as a medical waste, thus providing an easily available, cost effective, 'unlimited' and ethical source of raw materials. Although some of these tissues, such as the amniotic membrane and umbilical cord, have been used in clinical practices, most of them continue to be highly under explored. This review aims to outline the most relevant applications of perinatal tissues as a source of biomaterials and stem cells in the exciting fields of tissue engineering and regenerative medicine (TERM), as well as highlight how these solutions can be used to overcome the shortage of adequate scaffolds and cell sources that currently hampers the translation of TERM strategies towards clinical settings. STATEMENT OF SIGNIFICANCE: Stem cells and extracellular matrix derived from perinatal tissues such as placenta and umbilical cord, have drawn great attention for use in a wide variety of applications in the biomedical field. Due to their origin, these tissues possess unique biological properties, including being angiogenic, anti-inflammatory, anti-fibrotic, anti-microbial and immune privileged. Also they are typically considered medical waste, thus providing an easily available, cost effective, 'unlimited' and ethical source of raw materials. This work aims to present and discuss the most relevant applications of perinatal tissues as a source of biomaterials and stem cells in the exciting fields of tissue engineering and regenerative medicine (TERM).