Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Mar Drugs ; 22(2)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38393024

RESUMEN

Based on the results of our own preliminary studies, the derivative of the marine alkaloid fascaplysin containing a phenyl substituent at C-9 was selected to evaluate the therapeutic potential in vivo and in vitro. It was shown that this compound has outstandingly high antimicrobial activity against Gram-positive bacteria, including antibiotic-resistant strains in vitro. The presence of a substituent at C-9 of the framework is of fundamental importance, since its replacement to neighboring positions leads to a sharp decrease in the selectivity of the antibacterial action, which indicates the presence of a specific therapeutic target in bacterial cells. On a model of the acute bacterial sepsis in mice, it was shown that the lead compound was more effective than the reference antibiotic vancomycin seven out of nine times. However, ED50 value for 9-phenylfascaplysin (7) was similar for the unsubstituted fascaplysin (1) in vivo, despite the former being significantly more active than the latter in vitro. Similarly, assessments of the anticancer activity of compound 7 against various variants of Ehrlich carcinoma in mice demonstrated its substantial efficacy. To conduct a structure-activity relationship (SAR) analysis and searches of new candidate compounds, we synthesized a series of analogs of 9-phenylfascaplysin with varying aryl substituents. However, these modifications led to the reduced aqueous solubility of fascaplysin derivatives or caused a loss of their antibacterial activity. As a result, further research is required to explore new avenues for enhancing its pharmacokinetic characteristics, the modification of the heterocyclic framework, and optimizing of treatment regimens to harness the remarkable antimicrobial potential of fascaplysin for practical usage.


Asunto(s)
Antibacterianos , Antiinfecciosos , Carbolinas , Indolizinas , Compuestos de Amonio Cuaternario , Animales , Ratones , Antibacterianos/farmacología , Relación Estructura-Actividad , Indoles , Pruebas de Sensibilidad Microbiana
2.
Molecules ; 29(20)2024 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-39459334

RESUMEN

Gossypol and its derivatives arouse interest due to their broad spectrum of biological activities. Despite its wide potential application, there is no reported example of gossypol derivatives bearing stable radical functional groups. The first gossypol nitroxide hybrid compound was prepared here via formation of a Schiff base. By this approach, synthesis of a gossypol nitroxide conjugate was performed by condensation of gossypol with a 4-amino-TEMPO (4-amino-2,2,6,6-tetramethylpiperidin-1-oxyl) free radical, which afforded the target product in high yield. Its structure was proven by a combination of NMR and EPR spectroscopy, infrared spectroscopy, mass spectrometry, and high-resolution mass spectrometry. In addition, the structure of the gossypol nitroxide was determined by single-crystal X-ray diffraction measurements. In crystals, the paramagnetic Schiff base exists in an enamine-enamine tautomeric form. The tautomer is strongly stabilized by the intra- and intermolecular hydrogen bonds promoted by the resonance of π-electrons in the aromatic system. NMR analyses of the gossypol derivative proved that in solutions, the enamine-enamine tautomeric form prevailed. The gossypol nitroxide at micromolar concentrations suppressed the growth of tumor cells; however, compared to gossypol, the cytotoxicity of the obtained conjugate was substantially lower.


Asunto(s)
Gosipol , Marcadores de Spin , Gosipol/química , Gosipol/farmacología , Marcadores de Spin/síntesis química , Humanos , Espectroscopía de Resonancia por Spin del Electrón , Estructura Molecular , Espectroscopía de Resonancia Magnética , Línea Celular Tumoral , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Cristalografía por Rayos X , Óxidos N-Cíclicos/química , Modelos Moleculares , Bases de Schiff/química , Bases de Schiff/síntesis química
3.
Bioorg Chem ; 127: 105925, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35728293

RESUMEN

Chemical modifications of anthraquiones are aimed at novel derivatives with improved antitumor properties. Emergence of multidrug resistance (MDR) due to overexpression of transmembrane ATP binding cassette transporters, in particular, MDR1/P-glycoprotein (Pgp), can limit the use of anthraquinone based drugs. Previously we have demonstrated that annelation of modified five-membered heterocyclic rings with the anthraquinone core yielded a series of compounds with optimized antitumor properties. In the present study we synthesized a series of anthraquinone derivatives with six-membered heterocycles. Selected new compounds showed the ability to kill parental and MDR tumor cell lines at low micromolar concentrations. Molecular docking into the human Pgp model revealed a stronger interaction of 2-methylnaphtho[2,3-g]quinoline-3-carboxamide 17 compared to naphtho[2,3-f]indole-3-carboxamide 3. The time course of intracellular accumulation of compound 17 in parental K562 leukemia cells and in Pgp-positive K562/4 subline was similar. In contrast, compound 3 was readily effluxed from K562/4 cells and was significantly less potent for this subline than for K562 cells. Together with reported strategies of drug optimization of the anthracycline core, these results add ring expansion to the list of perspective modifications of heteroarene-fused anthraquinones.


Asunto(s)
Antineoplásicos , Antraquinonas/química , Antraquinonas/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Humanos , Simulación del Acoplamiento Molecular
4.
Molecules ; 27(14)2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35889538

RESUMEN

A series of novel cobalt bis(dicarbollide)-curcumin conjugates were synthesized. Two conjugates were obtained through the nucleophilic ring-opening reaction of the 1,4-dioxane and tetrahydropyran derivatives of cobalt bis(dicarbollide) with the OH group of curcumin, and using two equiv. of the oxonium derivatives, two other conjugates containing two cobalt bis(dicarbollide) units per molecule were obtained. In contrast to curcumin, the conjugates obtained were found to be non-cytotoxic against both tumor and normal cell lines. The analysis of the intracellular accumulation of the conjugates by flow cytometry showed that all cobalt bis(dicarbollide)-curcumin conjugates entered HCT116 colorectal carcinoma cells in a time-dependent manner. New non-cytotoxic conjugates contain a large amount of boron atoms in the biomolecule and can potentially be used for further biological research into boron neutron capture therapy (BNCT).


Asunto(s)
Terapia por Captura de Neutrón de Boro , Curcumina , Neoplasias , Boro/farmacología , Compuestos de Boro , Cobalto , Curcumina/farmacología , Humanos
5.
J Org Chem ; 86(12): 7975-7986, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34043357

RESUMEN

Oligomycin A is a potent antibiotic and antitumor agent. However, its applications are restricted by its high toxicity and low bioavailability. In this study, we obtained Oligomycin A Diels-Alder adducts with benzoquinone and N-benzylmaleimide and determined their absolute configurations by combining 1H and ROESY NMR data with molecular mechanics conformational analysis and quantum chemical reaction modeling. The latter showed that adduct stereochemistry is controlled by hydrogen bonding of the Oligomycin A side-chain isopropanol moiety with the carbonyl group of the dienophile. Biological studies showed that the Diels-Alder modification of the Oligomycin A diene system resulted in a complex antiproliferative potential pattern. The synthesized adducts were determined to be more active against the triple-negative (ERα, PR, and HER2 negative) breast cancer cell line MDA-MB-231 and lung carcinoma cell line A-549 compared to Oligomycin A. Meanwhile, Oligomycin A was more potent against myeloid leukemia cell line K-562 and breast carcinoma cell line MCF-7 than its derivatives. Thus, modification of the diene moiety of Oligomycin A is a promising strategy for developing novel antitumor agents based on its scaffold.


Asunto(s)
Modelos Moleculares , Humanos , Células MCF-7 , Conformación Molecular , Oligomicinas/farmacología
6.
Bioorg Chem ; 104: 104324, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33142432

RESUMEN

In this article, we describe the synthesis of 3-phenylquinoxaline-2-carbonitrile 1,4-dioxides bearing cyclic diamine residues at positions 6 or 7; the synthesis is based on the nucleophilic substitution of halogens. All synthesized 6(7)-aminoquinoxaline-2-carbonitrile 1,4-dioxides 3-6 demonstrated higher cytotoxicity and hypoxia selectivity compared to the reference agent tirapazamine against breast adenocarcinoma cell lines (MCF7, MDA-MB-231). The structure and position of the diamine residue considerably affects the antiproliferative properties of the quinoxaline-2-carbonitrile 1,4-dioxides. The introduction of a halogen atom at position 7 in the quinoxaline ring of 4a considerably increases the cytotoxicity of compounds 5a and 6a under both normoxic and hypoxic conditions. However, the most hypoxia-selective derivatives were non-halogenated 7-aminosubstituted 3-phenylquinoxaline-2-carbonitrile 1,4-dioxides 3a-j. Of the 32 novel synthesized derivatives, approximately 20 of the 6(7)-amino-3-phenylquinoxaline-2-carbonitrile 1,4-dioxides demonstrated high antiproliferative potency against wild type leukemia cells K562 and drug-resistant subline K562/4 with the expression of p-glycoprotein (p-gp) compared to the reference agent doxorubicin, which exhibited one order of magnitude lower activity towards K562/4 cells than towards K562 cells. Lead compounds 5a and 3f inhibited HIF-1α expression and activity and induced apoptosis in hypoxic tumor cells, which was confirmed by poly(ADP-ribose)polymerase (PARP) cleavage. Moreover, 5a and 3f showed strong antiestrogenic potencies in MCF7 breast cancer cells. Thus, the described series of quinoxaline 1,4-dioxides has high anticancer potential and good aqueous solubility. Therefore, these compounds are promising for further drug development of hypoxia-targeted anticancer agents.


Asunto(s)
Antineoplásicos/farmacología , Hipoxia de la Célula/efectos de los fármacos , Descubrimiento de Drogas , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Nitrilos/farmacología , Quinoxalinas/farmacología , Receptores de Estrógenos/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Estructura Molecular , Nitrilos/síntesis química , Nitrilos/química , Quinoxalinas/síntesis química , Quinoxalinas/química , Receptores de Estrógenos/metabolismo , Relación Estructura-Actividad
7.
Cancer Invest ; 36(3): 199-209, 2018 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-29624460

RESUMEN

A series of 3-aryl/hetarylquinoxaline-2-carbonitrile-1,4-dioxides was synthesized and evaluated against breast cancer cell lines in normoxia and hypoxia. Selected compounds in this series demonstrated better cytotoxicity and comparable hypoxia selectivity than tirapazamine. In contrast to Dox, quinoxaline-1,4-dioxides showed potent cytotoxicity against different MDR cells. Compound 2g inhibits of cancer cell growth through p53-independent mechanisms. Our results showed that compound 2g sensitized MCF-7 cells to metformin in hypoxia. Treatment with 2g results in the increase of ROS accumulation in cancer cells. Compound 2g can be considered as the lead compound for further anticancer drug design, evaluation, and development of new potent antitumor agents.


Asunto(s)
Regulación hacia Abajo , Resistencia a Antineoplásicos/efectos de los fármacos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Nitrilos/síntesis química , Quinoxalinas/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HCT116 , Humanos , Células K562 , Células MCF-7 , Metformina/farmacología , Estructura Molecular , Nitrilos/química , Nitrilos/farmacología , Especies Reactivas de Oxígeno/metabolismo
8.
Bioorg Med Chem ; 24(14): 3116-24, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27255178

RESUMEN

A derivative of the staurosporine aglycon (K252c), in which the lactam ring was replaced by a pyrazole moiety, was synthesized. The resulting indolopyrazolocarbazole (3) inhibited Pim isoforms 1-3 whereas it did not impair the activity of two known targets of K252c, protein kinase C isoforms α and γ. Compound 3 exhibited moderate cytotoxic activity toward human leukemia and colon carcinoma cell lines (K562 and HCT116), strongly suggesting that this new scaffold deserves further investigations for treatment of malignancies associated with Pim activity.


Asunto(s)
Pirazoles/química , Estaurosporina/síntesis química , Estaurosporina/farmacología , Espectroscopía de Resonancia Magnética con Carbono-13 , Ensayos de Selección de Medicamentos Antitumorales , Células HCT116 , Humanos , Células K562 , Modelos Moleculares , Proteína Quinasa C/efectos de los fármacos , Proteína Quinasa C-alfa/efectos de los fármacos , Espectroscopía de Protones por Resonancia Magnética , Espectrometría de Masa por Ionización de Electrospray , Estaurosporina/química , Relación Estructura-Actividad
9.
Eur Biophys J ; 43(10-11): 545-54, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25164439

RESUMEN

The porphyrin-based photosensitizers capable of binding to DNA are perspective drug candidates. Here we report the interactions with calf thymus DNA of 5,10,15,20-tetrakis(N-carboxymethyl-4-pyridinium)porphyrin (P1) and its derivatives containing Zn(II) or Ni(II) in the coordination sphere. These interactions were studied with absorption and circular dichroism spectroscopy. NiP1 and ZnP1 formed different types of complexes with DNA. NiP1 intercalated into the double helix, whereas ZnP1 bound the DNA groove. Compound P1 displayed both binding modes. The ZnP1-DNA binding constant was approximately three times smaller than the respective values for P1-DNA and NiP1-DNA complexes. Light induced degradation of the reactive oxygen species (ROS) trap 1,3-diphenylisobenzofuran in the presence of P1 and its metal derivatives revealed that NiP1 was a weaker photooxidative agent, whereas P1 and ZnP1 generated ROS to similar extents. Nevertheless, the DNA photodamaging effect of ZnP1 was the most pronounced. Illumination of the supercoiled plasmid caused single-strand DNA photocleavage in the presence of P1 and ZnP1; double strand breaks were detectable with micromolar concentrations of ZnP1. The concentration of ZnP1 required for plasmid photonicking was two times smaller than that of P1 and ~20 times lower than that for NiP1. Thus, the modes of P1, NiP1 and ZnP1 binding to DNA determine the differential photodamaging potency of these porphyrins. A greater accessibility to the solvent of the groove binder ZnP1, compared to the shielded intercalator NiP1 and the intercalated P1 molecules, allows for an efficient local generation of ROS followed by DNA photocleavage.


Asunto(s)
ADN de Cadena Simple/química , Metaloporfirinas/química , Níquel/química , Fármacos Fotosensibilizantes/química , Compuestos de Piridinio/química , Zinc/química , Secuencia de Aminoácidos , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/efectos de la radiación , Metaloporfirinas/síntesis química , Metaloporfirinas/farmacología , Metaloporfirinas/efectos de la radiación , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/efectos de la radiación , Compuestos de Piridinio/síntesis química , Rayos Ultravioleta
10.
Eur J Med Chem ; 281: 117013, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39500064

RESUMEN

The acquisition of multidrug resistance (MDR) to chemotherapy is a major obstacle to successful cancer treatment. Aiming to improve the potency of anthraquinone-derived antitumor compounds against MDR cancer cells, we employed a rational design approach to develop new heteroarene-fused anthraquinones. Shifting the carboxamide group in the naphtho[2,3-f]indole scaffold from the 3-position to 2 increased the lipophilicity and P-glycoprotein (P-gp) binding of the derivatives, potentially enhancing their ability to circumvent P-gp-mediated MDR. To validate the computations, we developed a scheme for heterocyclization into esters of naphtho[2,3-f]indole-2-carboxylic acid, based on the 5-endo-dig cyclization of 2-alkynyl-3-amino-1,4-dimethoxyanthraquinone under mild basic conditions using tetra-n-butylammonium fluoride (TBAF). The synthesized naphthoindole-2-carboxamides, particularly compound 1a bearing (S)-3-aminopyrrolidine in the carboxamide fragment, demonstrated the highest antiproliferative activity. Most importantly, 1a suppressed the growth of the P-gp-positive K562/4 leukemia tumor cell line (resistance index = 2.4), while its 3-isomer LCTA-2640 and Dox did not (RI = 125 and 140, respectively). Studies of intracellular uptake and distribution showed that 1a, unlike its 3-substituted isomer, effectively accumulated in resistant tumor cells, confirming the correlation between in silico and experimental data. The lead compound 1a interacts with DNA duplex and inhibits topoisomerase 1 but does not induce oxidative stress. Treatment with 1a increases the population of apoptotic cells in both K562 and K562/4 sublines, regardless of the cell cycle phase. Taken together, this work provides an interesting example of how a little modification in chemical structure can lead to striking differences in antitumor properties. In conclusion, we have identified a potent class of compounds that offer distinct advantages in combating resistant tumor cells.

11.
Eur J Med Chem ; 265: 116103, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38176358

RESUMEN

In our pursuit of developing novel analogs of anthracyclines with enhanced antitumor efficacy and safety, we have designed a synthesis scheme for 4,11-dihydroxy-5,10-dioxocyclopenta[b]anthracene-2-carboxamides. These newly synthesized compounds exhibit remarkable antiproliferative potency against various mammalian tumor cell lines, including those expressing activated mechanisms of multidrug resistance. The structure of the diamine moiety in the carboxamide side chain emerges as a critical determinant for anticancer activity and interaction with key targets such as DNA, topoisomerase 1, and ROS induction. Notably, the introduced modification to the doxorubicin structure results in significantly increased lipophilicity, cellular uptake, and preferential distribution in lysosomes. Consequently, while maintaining an impact on anthracyclines targets, these novel derivatives also demonstrate the potential to induce cytotoxicity through pathways associated with lysosomes. In summary, derivatives of cyclic diamines, particularly 3-aminopyrrolidine, can be considered a superior choice compared to aminosugars for incorporation into natural and semi-synthetic anthracyclines or new anthraquinone derivatives, aiming to circumvent efflux-mediated drug resistance.


Asunto(s)
Antineoplásicos , Animales , Antineoplásicos/química , Antraquinonas/química , Ciclopentanos , Ensayos de Selección de Medicamentos Antitumorales , Antibióticos Antineoplásicos/farmacología , Antraciclinas , Inhibidores de Topoisomerasa II/farmacología , Relación Estructura-Actividad , Mamíferos/metabolismo
12.
Eur J Med Chem ; 268: 116222, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38387333

RESUMEN

G-quadruplex (G4) ligands attract considerable attention as potential anticancer therapeutics. In this study we proposed an original scheme for synthesis of azole-fused anthraquinones and prepared a series of G4 ligands carrying amino- or guanidinoalkylamino side chains. The heterocyclic core and structure of the terminal groups strongly affect on binding to G4-forming oligonucleotides, cellular accumulation and antitumor potency of compounds. In particular, thiadiazole- and selenadiazole- but not triazole-based ligands inhibit the proliferation of tumor cells (e.g. K562 leukemia) and stabilize primarily telomeric and c-MYC G4s. Anthraselenadiazole derivative 11a showed a good affinity to c-MYC G4 in vitro and down-regulated expression of c-MYC oncogene in cellular conditions. Further studies revealed that anthraselenadiazole 11a provoked cell cycle arrest and apoptosis in a dose- and time-dependent manner inhibiting K562 cells growth. Taken together, this work gives a valuable example that the closely related heterocycles may cause a significant difference in biological properties of G4 ligands.


Asunto(s)
Antineoplásicos , G-Cuádruplex , Antineoplásicos/química , Antraquinonas/química , Triazoles/farmacología , Proliferación Celular , Puntos de Control del Ciclo Celular , Ligandos
13.
Bioorg Med Chem ; 21(11): 2918-24, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23623676

RESUMEN

A novel way of chemical modification of the macrolide antibiotic oligomycin A (1) at the side chain was developed. Mesylation of 1 with methane sulfonyl chloride in the presence of 4-dimethylaminopyridine produced 33-O-mesyl oligomycin in 56% yield. Reactions of this intermediate with sodium azide produced the key derivative 33-azido-33-deoxy-oligomycin A in 60% yield. 1,3-Dipolar cycloaddition reaction with propiolic acid, methyl ester of propiolic acid, and phenyl acetylene resulted in 33-deoxy-33-(1,2,3-triazol-1-yl)oligomycin A derivatives substituted at N4 of the triazole cycle. The mesylated oligomycin A and 33-deoxy-33-azidooligomycin A did not inhibit F0F1 ATFase ATPase; however, 33-azido-33-deoxy-oligomycin A and the derivatives containing 4-phenyltriazole, 4-methoxycarbonyl-triazole and 3-dimethylaminoethyl amide of carboxyltriazole substituents demonstrated a high cytotoxicity against K562 leukemia and HCT116 human colon carcinoma cell lines whereas non-malignant skin fibroblasts were less sensitive to these compounds. Novel series of oligomycin A derivatives allow for the search of intracellular molecules beyond F0F1 ATP synthase relevant to the cytotoxic properties of this perspective chemical class.


Asunto(s)
Antibacterianos/síntesis química , Citotoxinas/síntesis química , Oligomicinas/química , Triazoles/síntesis química , 4-Aminopiridina/análogos & derivados , 4-Aminopiridina/química , Secuencia de Aminoácidos , Antibacterianos/farmacología , Sitios de Unión , Línea Celular Tumoral , Reacción de Cicloadición , Citotoxinas/farmacología , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/enzimología , Humanos , Mesilatos/química , Datos de Secuencia Molecular , Oligomicinas/farmacología , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/metabolismo , Piel/citología , Piel/efectos de los fármacos , Piel/enzimología , Azida Sódica/química , Streptomyces/efectos de los fármacos , Streptomyces/crecimiento & desarrollo , Triazoles/farmacología
14.
Pharmaceuticals (Basel) ; 17(1)2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38256865

RESUMEN

Breast and other estrogen receptor α-positive cancers tend to develop resistance to existing drugs. Chalcone derivatives possess anticancer activity based on their ability to form covalent bonds with targets acting as Michael acceptors. This study aimed to evaluate the anticancer properties of a series of chalcones (7a-l) with a sulfonamide group attached to the vinyl ketone moiety. Chalconesulfonamides showed a potent antiproliferative effect at low micromolar concentrations against several cancer cell lines, including ERα-positive 4-hydroxytamoxifen-resistant MCF7/HT2. Immunoblotting of samples treated with the lead compound 7e revealed its potent antiestrogenic activity (ERα/GREB1 axis) and induction of PARP cleavage (an apoptosis marker) in breast cancer cells. The obtained compounds represent a promising basis for further development of targeted drugs blocking hormone pathways in cancer cells.

15.
ACS Infect Dis ; 9(1): 42-55, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36563312

RESUMEN

Natamycin is a macrolide polyene antibiotic, characterized by a potent broad spectrum antifungal activity and low toxicity. However, it is not used for the treatment of systemic mycoses due to its low bioavailability and low solubility in aqueous solutions. In order to create new semisynthetic antifungal agents for treatment of mycoses, a series of water-soluble amides of natamycin were synthesized. Antifungal activities of natamycin derivatives were investigated against Candida spp., including a panel of Candida auris clinical isolates and filamentous fungi. Toxicity for mammalian cells was assayed by monitoring antiproliferative activity against human postnatal fibroblasts (HPF) and human embryonic kidney cells (HEK293). By comparing leakage of contents from ergosterol versus cholesterol containing vesicles, a ratio that characterizes the efficacy and safety of natamycin and its derivatives was determined (EI, efficiency index). Ability of all tested semisynthetic natamycines to prevent proliferation of the yeast Candida spp. cells was comparable or even slightly higher to those of parent antibiotic. Interestingly, amide 8 was more potent than natamycin (1) against all tested C. auris strains (MIC values 2 µg/mL vs 8 µg/mL, respectively). Among 7 derivatives, amide 10 with long lipophilic side chains showed the highest EI and strong antifungal activity in vitro but was more toxic against HPF. In vivo experiments with amide 8 showed in vivo efficacy on a mouse candidemia model with a larger LD50/ED50 ratio in comparison to amphotericin B.


Asunto(s)
Micosis , Natamicina , Animales , Ratones , Humanos , Natamicina/farmacología , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Células HEK293 , Polienos/farmacología , Micosis/tratamiento farmacológico , Candida , Saccharomyces cerevisiae , Mamíferos
16.
Eur J Med Chem ; 228: 113997, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34902732

RESUMEN

Carbonic anhydrase IX is a promising target for the search for new antitumor compounds with improved properties. Using the molecular hybridization approach, on the basis of structures of a selective carbonic anhydrase IX inhibitor 3 and an activator of apoptosis 2 (1), a series of 1-substituted isatin-5-sulfonamides 5a-5u were designed and synthesized. The study of the inhibitory activity of isatin-5-sulfonamides showed the ability to inhibit I, II, IX, XII isoforms at nano- and micromolar concentrations. Docking of compounds 5e and 5k into the active site of II and IX carbonic anhydrase isoforms showed the coordination of sulfonamidate anions with zinc cations, as well as a number of additional hydrophobic interactions. The trifluoromethylthio derivative 5r suppressed the growth of tumor cells at low micromolar concentrations, maintaining activity on resistant lines and under hypoxic conditions. Immunoblotting of MCF7 cells treated with the 5r revealed its antiestrogenic activity and ability to activate apoptosis in tumor cells.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Inhibidores de Anhidrasa Carbónica/farmacología , Anhidrasas Carbónicas/metabolismo , Isatina/farmacología , Sulfonamidas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Isatina/síntesis química , Isatina/química , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/química
17.
Pharmaceuticals (Basel) ; 15(12)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36558903

RESUMEN

The overexpression and activity of carbonic anhydrase (CA, EC 4.2.1.1) isoforms CA IX and CA XII promote the accumulation of exceeding protons and acidosis in the extracellular tumor environment. Sulfonamides are effective inhibitors of most families of CAs. In this study, using scaffold-hopping, indoline-5-sulfonamide analogs 4a-u of the CA IX-selective inhibitor 3 were designed and synthesized to evaluate their biological properties. 1-Acylated indoline-5-sulfonamides demonstrated inhibitory activity against tumor-associated CA IX and XII with KI values up to 132.8 nM and 41.3 nM. Compound 4f, as one of the most potent inhibitors of CA IX and XII, exhibits hypoxic selectivity, suppressing the growth of MCF7 cells at 12.9 µM, and causes partial inhibition of hypoxia-induced CA IX expression in A431 skin cancer cells. 4e and 4f reverse chemoresistance to doxorubicin of K562/4 with overexpression of P-gp.

18.
Bioorg Med Chem ; 19(24): 7387-93, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-22088308

RESUMEN

A novel way of chemical modification of the antibiotic olivomycin A (1) at the side chain of the aglycon moiety was developed. Interaction of olivomycin A with the sodium periodate produced the key acid derivative olivomycin SA (2) in 86% yield. This acid was used in the reactions with different amines in the presence of benzotriazol-1-yl-oxy-trispyrrolidino-phosphonium hexafluorophosphate (PyBOP) or diphenylphosphoryl azide (DPPA) to give corresponding amides. Whereas olivomycin SA was two orders of magnitude less cytotoxic than the parent antibiotic, the amides of 2 demonstrated a higher cytotoxicity. In particular, N,N-dimethylaminoethylamide of olivomycin SA showed a pronounced antitumor effect against transplanted experimental lymphoma and melanoma and a remarkably high binding constant to double stranded DNA. The therapeutic effects of this derivative were achievable at tolerable concentrations, suggesting that modifications of the aglycon's side chain, namely, its shortening to methoxyacetic residue and blocking of free carboxyl group, are straightforward for the design of therapeutically applicable derivatives of olivomycin A.


Asunto(s)
Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/uso terapéutico , Animales , Antibióticos Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , ADN/metabolismo , Femenino , Humanos , Linfoma/tratamiento farmacológico , Melanoma/tratamiento farmacológico , Ratones , Olivomicinas/química , Olivomicinas/farmacología , Olivomicinas/uso terapéutico
19.
RSC Adv ; 11(61): 38782-38795, 2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-35493230

RESUMEN

To establish a new approach for the synthesis of quinoxaline 1,4-dioxides as hypoxia-selective cytotoxic agents, an original multi-step preparation of derivatives possessing the diamine moiety at position 7 was evaluated. Herein, we present the synthesis of a series of novel 7-amino-6-halogeno-3-phenylquinoxaline-2-carbonitrile 1,4-dioxides 13a-h, 14a,b,g based on the regioselective Beirut reaction. Comparison of antitumor properties of derivatives possessing the diamine moiety at position 7 with structurally close congeners possessing the corresponding amino groups at position 6 revealed key differences in the cytotoxicity profiles and HIF-1α inhibition. All the synthesized 7-amino-6-halogeno derivatives 13a-h, 14a,b,g demonstrated significant cytotoxic activities against breast cancer cell lines (MCF7, MDA-MB-231) in normoxia and hypoxia with IC50 values ranging from 0.1 to 7.6 µM. Most of these novel derivatives can circumvent the multidrug resistance of tumor cells caused by P-glycoprotein over expression. The lead compounds 13a, 14a and 14b can suppress the expression of HIF-1α at low micromolar concentrations and induce apoptosis in breast cancer MCF7 cells. In addition, compound 14b effectively inhibits BCL2 and ERα expression in MCF7 cells. The current research opens a new direction for targeting hypoxia and drug resistance of cancer cells.

20.
Eur J Med Chem ; 221: 113521, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34082225

RESUMEN

The anthraquinone scaffold has long been known as a source of efficacious antitumor drugs. In particular, the various chemical modifications of the side chains in this scaffold have yielded the compounds potent for the wild type tumor cells, their counterparts with molecular determinants of altered drug response, as well as in vivo settings. Further exploring the chemotype of anticancer heteroarene-fused anthraquinones, we herein demonstrate that derivative of anthra[2,3-b]thiophene-2-carboxamide, (compound 8) is highly potent against a panel of human tumor cell lines and their drug resistant variants. Treatment with submicromolar or low micromolar concentrations of 8 for only 30 min was sufficient to trigger lethal damage of K562 chronic myelogenous leukemia cells. Compound 8 (2.5 µM, 3-6 h) induced an apoptotic cell death as determined by concomitant activation of caspases 3 and 9, cleavage of poly(ADP-ribose) polymerase, increase of Annexin V/propidium iodide double stained cells, DNA fragmentation (subG1 fraction) and a decrease of mitochondrial membrane potential. Neither a significant interaction with double stranded DNA nor strong inhibition of the DNA dependent enzyme topoisomerase 1 by 8 were detectable in cell free systems. Laser scanning confocal microscopy revealed that some amount of 8 was detectable in mitochondria as early as 5 min after the addition to the cells; exposure for 1 h caused significant morphological changes and clustering of mitochondria. The bioisosteric analog 2 in which the thiophene ring was replaced with furan was less active although the patterns of cytotoxicity of both derivatives were similar. These results point at the specific role of the sulfur atom in the antitumor properties of carboxamide derivatives of heteroarene-fused anthraquinone.


Asunto(s)
Antraquinonas/farmacología , Antineoplásicos/farmacología , Tiofenos/farmacología , Antraquinonas/síntesis química , Antraquinonas/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Células K562 , Estructura Molecular , Relación Estructura-Actividad , Tiofenos/síntesis química , Tiofenos/química , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA