Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nanotechnology ; 32(9): 095701, 2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33113521

RESUMEN

Understanding the origin of magnetic ordering in an undoped semiconductor with native defects is an open question, which is being explored actively in research. In this investigation, the interplay between magnetic ordering and excess induced native defects in undoped anatase TiO2 nanoparticles is explained using an experimental and theoretical approach. It is demonstrated that structurally disordered TiO2 nanoparticles with a high concentration of native defects such as titanium interstitials and oxygen vacancies are synthesized using controlled atmospheric rapid cooling (i.e. quenching) process. The structural disorders in the lattice have been examined using various spectroscopic and microscopic analyses revealed the existence of Ti deficiency in both pristine and quenched TiO2 nanoparticles. A possible origin of magnetic ordering in titanium deficient anatase TiO2 system is elucidated based on first-principle calculations. It was found that the overall magnetic moment of Ti deficient TiO2 system is determined by the distance between Ti interstitials and its neighboring vacancies (i.e. either V Ti or V Os). However, quenched TiO2 nanoparticles possess excess Ti interstitials, Ti and O vacancies and therefore the net magnetic moment of the system is reduced due to anti-ferromagnetically coupled neighboring Tilattice ions.

2.
Phys Chem Chem Phys ; 22(14): 7524-7536, 2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32219238

RESUMEN

Herein, porous 1D n-p type ultra-long ZnO@Bi2O3 heterojunction nanorods have been synthesized by a solvothermal method and their complex charge transport characteristics pertaining to NO2 gas sensing properties have been investigated. The porous structure of the ZnO@Bi2O3 heterojunction nanorods assisted in achieving superior sensing properties compared to pristine ZnO nanorods. Temperature-dependent in situ electrical studies of the porous heterojunction nanorods explored the unique electron transport properties under different environments, which revealed the accumulation/depletion of electrons and charge carrier recombination leading to band bending at the metal oxide heterojunctions. The formation of electron depletion layers at n-ZnO/p-Bi2O3 interfaces is believed to increase the adsorption of oxidizing gas, resulting in a fast response time (10-12 s) and 10 times higher sensitivity than that of the ZnO nanorod-based sensor towards 500 ppb NO2. To study the structure-property correlation of the ultra-long ZnO@Bi2O3 heterojunction nanorods-based sensor, a crystallographic model supported by transmission electron microscopy analysis was adopted to understand the NO2 gas adsorption properties on the surface. The crystallographic model helps to visualize the dangling bonds and the ratio of metal to oxygen ions present at the exposed crystal planes. The results suggest that porous, ultralong n-p type ZnO@Bi2O3 heterojunction nanorods could be a promising candidate for a high performance NO2 sensor for real time applications.

3.
J Breath Res ; 13(4): 046005, 2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-31170701

RESUMEN

This work demonstrates the development of Ag@polyaniline/multi-walled carbon nanotube nanocomposite-based sensor strips and a suitable integrated electronic read-out system for the measurement of trace-level concentrations of ammonia (NH3). The sensor is optimized under various operating conditions and the resulting sensor exhibited an enhanced response (32% for 2 ppm) with excellent selectivity. Stable performance was observed towards NH3 in the presence of high concentrations of CO2 (>40 000 ppm), simulated and real breath samples. A suitable electronic sensor read-out system has also been designed and developed based on multi-scale resistance-to-voltage conversion architecture, processed by a 32-bit microcontroller which is operatable over a wide range of sensor resistance (1 kΩ to 200 MΩ). As a proof of concept, integration of gas-sensing strips with the electronic read-out system was tested with various levels of NH3 (<2 ppm as normal, >2 ppm as critical and 2 ppm as threshold), which is important for clinical breath analyzer applications. The developed prototype device can be readily incorporated into a portable, low-cost and non-invasive point-of-care breath NH3 detection unit for portable pre-diagnostic breath analyzer applications.


Asunto(s)
Amoníaco/análisis , Pruebas Respiratorias/métodos , Costos y Análisis de Costo , Nanotubos de Carbono/química , Compuestos de Anilina/química , Dióxido de Carbono/farmacología , Simulación por Computador , Humanos , Humedad , Nanocompuestos/química , Reproducibilidad de los Resultados , Plata/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA