Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Eur Arch Otorhinolaryngol ; 280(5): 2149-2154, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36210370

RESUMEN

PURPOSE: A narrow bony internal auditory canal (IAC) may be associated with a hypoplastic cochlear nerve and poorer hearing performances after cochlear implantation. However, definitions for a narrow IAC vary widely and commonly, qualitative grading or two-dimensional measures are used to characterize a narrow IAC. We aimed to refine the definition of a narrow IAC by determining IAC volume in both control patients and patients with inner ear malformations (IEMs). METHODS: In this multicentric study, we included high-resolution CT (HRCT) scans of 128 temporal bones (85 with IEMs: cochlear aplasia, n = 11; common cavity, n = 2; cochlear hypoplasia type, n = 19; incomplete partition type I/III, n = 8/8; Mondini malformation, n = 16; enlarged vestibular aqueduct syndrome, n = 19; 45 controls). The IAC diameter was measured in the axial plane and the IAC volume was measured by semi-automatic segmentation and three-dimensional reconstruction. RESULTS: In controls, the mean IAC diameter was 5.5 mm (SD 1.1 mm) and the mean IAC volume was 175.3 mm3 (SD 52.6 mm3). Statistically significant differences in IAC volumes were found in cochlear aplasia (68.3 mm3, p < 0.0001), IPI (107.4 mm3, p = 0.04), and IPIII (277.5 mm3, p = 0.0004 mm3). Inter-rater reliability was higher in IAC volume than in IAC diameter (intraclass correlation coefficient 0.92 vs. 0.77). CONCLUSIONS: Volumetric measurement of IAC in cases of IEMs reduces measurement variability and may add to classifying IEMs. Since a hypoplastic IAC can be associated with a hypoplastic cochlear nerve and sensorineural hearing loss, radiologic assessment of the IAC is crucial in patients with severe sensorineural hearing loss undergoing cochlear implantation.


Asunto(s)
Oído Interno , Pérdida Auditiva Sensorineural , Humanos , Reproducibilidad de los Resultados , Estudios Retrospectivos , Oído Interno/diagnóstico por imagen , Oído Interno/anomalías , Cóclea/diagnóstico por imagen , Pérdida Auditiva Sensorineural/diagnóstico por imagen , Pérdida Auditiva Sensorineural/cirugía
2.
Eur Arch Otorhinolaryngol ; 280(5): 2155-2163, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36216913

RESUMEN

OBJECTIVES: Enlarged vestibular aqueduct (EVA) is a common finding associated with inner ear malformations (IEM). However, uniform radiologic definitions for EVA are missing and various 2D-measurement methods to define EVA have been reported. This study evaluates VA volume in different types of IEM and compares 3D-reconstructed VA volume to 2D-measurements. METHODS: A total of 98 high-resolution CT (HRCT) data sets from temporal bones were analyzed (56 with IEM; [cochlear hypoplasia (CH; n = 18), incomplete partition type I (IPI; n = 12) and type II (IPII; n = 11) and EVA (n = 15)]; 42 controls). VA diameter was measured in axial images. VA volume was analyzed by software-based, semi-automatic segmentation and 3D-reconstruction. Differences in VA volume between the groups and associations between VA volume and VA diameter were assessed. Inter-rater-reliability (IRR) was assessed using the intra-class-correlation-coefficient (ICC). RESULTS: Larger VA volumes were found in IEM compared to controls. Significant differences in VA volume between patients with EVA and controls (p < 0.001) as well as between IPII and controls (p < 0.001) were found. VA diameter at the midpoint (VA midpoint) and at the operculum (VA operculum) correlated to VA volume in IPI (VA midpoint: r = 0.78, VA operculum: r = 0.91), in CH (VA midpoint: r = 0.59, VA operculum: r = 0.61), in EVA (VA midpoint: r = 0.55, VA operculum: r = 0.66) and in controls (VA midpoint: r = 0.36, VA operculum: r = 0.42). The highest IRR was found for VA volume (ICC = 0.90). CONCLUSIONS: The VA diameter may be an insufficient estimate of VA volume, since (1) measurement of VA diameter does not reliably correlate with VA volume and (2) VA diameter shows a lower IRR than VA volume. 3D-reconstruction and VA volumetry may add information in diagnosing EVA in cases with or without additional IEM.


Asunto(s)
Pérdida Auditiva Sensorineural , Acueducto Vestibular , Humanos , Reproducibilidad de los Resultados , Estudios Retrospectivos , Acueducto Vestibular/diagnóstico por imagen , Acueducto Vestibular/anomalías , Cóclea
3.
Eur Radiol ; 32(2): 1014-1023, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34463797

RESUMEN

OBJECTIVES: Knowledge about cochlear duct length (CDL) may assist electrode choice in cochlear implantation (CI). However, no gold standard for clinical applicable estimation of CDL exists. The aim of this study is (1) to determine the most reliable radiological imaging method and imaging processing software for measuring CDL from clinical routine imaging and (2) to accurately predict the insertion depth of the CI electrode. METHODS: Twenty human temporal bones were examined using different sectional imaging techniques (high-resolution computed tomography [HRCT] and cone beam computed tomography [CBCT]). CDL was measured using three methods: length estimation using (1) a dedicated preclinical 3D reconstruction software, (2) the established A-value method, and (3) a clinically approved otosurgical planning software. Temporal bones were implanted with a 31.5-mm CI electrode and measurements were compared to a reference based on the CI electrode insertion angle measured by radiographs in Stenvers projection (CDLreference). RESULTS: A mean cochlear coverage of 74% (SD 7.4%) was found. The CDLreference showed significant differences to each other method (p < 0.001). The strongest correlation to the CDLreference was found for the otosurgical planning software-based method obtained from HRCT (CDLSW-HRCT; r = 0.87, p < 0.001) and from CBCT (CDLSW-CBCT; r = 0.76, p < 0.001). Overall, CDL was underestimated by each applied method. The inter-rater reliability was fair for the CDL estimation based on 3D reconstruction from CBCT (CDL3D-CBCT; intra-class correlation coefficient [ICC] = 0.43), good for CDL estimation based on 3D reconstruction from HRCT (CDL3D-HRCT; ICC = 0.71), poor for CDL estimation based on the A-value method from HRCT (CDLA-HRCT; ICC = 0.29), and excellent for CDL estimation based on the A-value method from CBCT (CDLA-CBCT; ICC = 0.87) as well as for the CDLSW-HRCT (ICC = 0.94), CDLSW-CBCT (ICC = 0.94) and CDLreference (ICC = 0.87). CONCLUSIONS: All approaches would have led to an electrode choice of rather too short electrodes. Concerning treatment decisions based on CDL measurements, the otosurgical planning software-based method has to be recommended. The best inter-rater reliability was found for CDLA-CBCT, for CDLSW-HRCT, for CDLSW-CBCT, and for CDLreference. KEY POINTS: • Clinically applicable calculations using high-resolution CT and cone beam CT underestimate the cochlear size. • Ten percent of cochlear duct length need to be added to current calculations in order to predict the postoperative CI electrode position. • The clinically approved otosurgical planning software-based method software is the most suitable to estimate the cochlear duct length and shows an excellent inter-rater reliability.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Cóclea/diagnóstico por imagen , Conducto Coclear/cirugía , Tomografía Computarizada de Haz Cónico , Electrodos Implantados , Humanos , Reproducibilidad de los Resultados , Hueso Temporal/diagnóstico por imagen , Tomografía Computarizada por Rayos X
4.
Front Neurol ; 15: 1348439, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756216

RESUMEN

The optimal placement of a cochlear implant (CI) electrode inside the scala tympani compartment to create an effective electrode-neural interface is the base for a successful CI treatment. The characteristics of an effective electrode design include (a) electrode matching every possible variation in the inner ear size, shape, and anatomy, (b) electrically covering most of the neuronal elements, and (c) preserving intra-cochlear structures, even in non-hearing preservation surgeries. Flexible electrode arrays of various lengths are required to reach an angular insertion depth of 680° to which neuronal cell bodies are angularly distributed and to minimize the rate of electrode scalar deviation. At the time of writing this article, the current scientific evidence indicates that straight lateral wall electrode outperforms perimodiolar electrode by preventing electrode tip fold-over and scalar deviation. Most of the available literature on electrode insertion depth and hearing outcomes supports the practice of physically placing an electrode to cover both the basal and middle turns of the cochlea. This is only achievable with longer straight lateral wall electrodes as single-sized and pre-shaped perimodiolar electrodes have limitations in reaching beyond the basal turn of the cochlea and in offering consistent modiolar hugging placement in every cochlea. For malformed inner ear anatomies that lack a central modiolar trunk, the perimodiolar electrode is not an effective electrode choice. Most of the literature has failed to demonstrate superiority in hearing outcomes when comparing perimodiolar electrodes with straight lateral wall electrodes from single CI manufacturers. In summary, flexible and straight lateral wall electrode type is reported to be gentle to intra-cochlear structures and has the potential to electrically stimulate most of the neuronal elements, which are necessary in bringing full benefit of the CI device to recipients.

5.
Comput Biol Med ; 171: 108168, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38432006

RESUMEN

BACKGROUND: To develop an effective radiological software prototype that could read Digital Imaging and Communications in Medicine (DICOM) files, crop the inner ear automatically based on head computed tomography (CT), and classify normal and inner ear malformation (IEM). METHODS: A retrospective analysis was conducted on 2053 patients from 3 hospitals. We extracted 1200 inner ear CTs for importing, cropping, and training, testing, and validating an artificial intelligence (AI) model. Automated cropping algorithms based on CTs were developed to precisely isolate the inner ear volume. Additionally, a simple graphical user interface (GUI) was implemented for user interaction. Using cropped CTs as input, a deep learning convolutional neural network (DL CNN) with 5-fold cross-validation was used to classify inner ear anatomy as normal or abnormal. Five specific IEM types (cochlear hypoplasia, ossification, incomplete partition types I and III, and common cavity) were included, with data equally distributed between classes. Both the cropping tool and the AI model were extensively validated. RESULTS: The newly developed DICOM viewer/software successfully achieved its objectives: reading CT files, automatically cropping inner ear volumes, and classifying them as normal or malformed. The cropping tool demonstrated an average accuracy of 92.25%. The DL CNN model achieved an area under the curve (AUC) of 0.86 (95% confidence interval: 0.81-0.91). Performance metrics for the AI model were: accuracy (0.812), precision (0.791), recall (0.8), and F1-score (0.766). CONCLUSION: This study successfully developed and validated a fully automated workflow for classifying normal versus abnormal inner ear anatomy using a combination of advanced image processing and deep learning techniques. The tool exhibited good diagnostic accuracy, suggesting its potential application in risk stratification. However, it is crucial to emphasize the need for supervision by qualified medical professionals when utilizing this tool for clinical decision-making.


Asunto(s)
Inteligencia Artificial , Oído Interno , Humanos , Estudios Retrospectivos , Oído Interno/diagnóstico por imagen , Oído Interno/anomalías , Redes Neurales de la Computación , Programas Informáticos
6.
Sci Rep ; 13(1): 66, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36604454

RESUMEN

The mathematical equations to estimate cochlear duct length (CDL) using cochlear parameters such as basal turn diameter (A-value) and width (B-value) are currently applied for cochleae with two and a half turns of normal development. Most of the inner ear malformation (IEM) types have either less than two and a half cochlear turns or have a cystic apex, making the current available CDL equations unsuitable for cochleae with abnormal anatomies. Therefore, this study aimed to estimate the basal turn length (BTL) from the cochlear parameters of different anatomical types, including normal anatomy; enlarged vestibular aqueduct; incomplete partition types I, II, and III; and cochlear hypoplasia. The lateral wall was manually tracked for 360° of the angular depth, along with the A and B values in the oblique coronal view for all anatomical types. A strong positive linear correlation was observed between BTL and the A- (r2 = 0.74) and B-values (r2 = 0.84). The multiple linear regression model to predict the BTL from the A-and B-values resulted in the following equation (estimated BTL = [A × 1.04] + [B × 1.89] - 0.92). The manually measured and estimated BTL differed by 1.12%. The proposed equation could be beneficial in adequately selecting an electrode that covers the basal turn in deformed cochleae.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Pérdida Auditiva Sensorineural , Acueducto Vestibular , Humanos , Tomografía Computarizada por Rayos X , Cóclea/cirugía , Conducto Coclear , Implantación Coclear/métodos
7.
Otol Neurotol ; 44(5): e295-e299, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37167446

RESUMEN

OBJECTIVE: Rudimentary otocyst (RO) is characterized by an otic capsule without an internal auditory canal, which is considered a contraindication to cochlear implantation (CI). In this study, we were the first to report two patients with ROs who underwent CI. PATIENT: Two patients (18 months old and 2 years old) presenting with bilateral congenital hearing loss were diagnosed with ROs. INTERVENTION: CI was performed. The transmastoid slotted labyrinthotomy approach was used with customized MED-EL electrode arrays. MAIN OUTCOME MEASURES: Categorical auditory performance, infant-toddler meaningful auditory integration of sound, the speech intelligibility rating, and meaningful use of speech scale. RESULTS: Both children could understand common phrases and had intelligible, connected speech 2 years after CI. CONCLUSION: With proper indication, surgical approach and postoperative training, a child with an RO may benefit from CI.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Sordera , Percepción del Habla , Lactante , Humanos , Especies Reactivas de Oxígeno , Resultado del Tratamiento , Sordera/cirugía , Pérdida Auditiva Bilateral/cirugía , Inteligibilidad del Habla , Membrana Otolítica
8.
Sci Rep ; 13(1): 21496, 2023 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057331

RESUMEN

Estimating insertion depth, cochlear duct length (CDL), and other inner ear parameters is vital to optimizing cochlear implantation outcomes. Most current formulas use only the basal turn dimensions for CDL prediction. In this study, we investigated the importance of the second turn parameters in estimating CDL. Two experienced neuro-otologists blindly used segmentation software to measure (in mm) cochlear parameters, including basal turn diameter (A), basal turn width (B), second-turn diameter (A2), second-turn width (B2), CDL, first-turn length, and second-turn length (STL). These readings were taken from 33 computed tomography (CT) images of temporal bones from anatomically normal ears. We constructed regression models using A, B, A2, and B2 values fitted to CDL, two-turn length, and five-fold cross-validation to ensure model validity. CDL, A value, and STL were longer in males than in females. The mean B2/A2 ratio was 0.91 ± 0.06. Adding A2 and B2 values improved CDL prediction accuracy to 86.11%. Therefore, we propose a new formula for more accurate CDL estimation using A, B, A2, and B2 values. In conclusion, the findings of this study revealed a notable improvement in the prediction of two-turn length (2TL), and CDL by clinically appreciable margins upon adding A2 and B2 values to the prediction formulas.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Masculino , Femenino , Humanos , Conducto Coclear , Cóclea/diagnóstico por imagen , Cóclea/cirugía , Implantación Coclear/métodos , Tomografía Computarizada por Rayos X/métodos , Hueso Temporal
9.
Sci Rep ; 13(1): 10967, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37414822

RESUMEN

The aim of this study was to understand the mastoid volume development in children who undergo cochlear implantation surgery. Cochlear implant (CI) database of our clinic (Kuopio University Hospital) was reviewed for computed tomography (CT) images of CI patients (age under 12 years at the time of implantation) with a minimum time interval of twelve months between their pre- and postoperative CT. Eight patients (nine ears) were found eligible for inclusion. Three linear measurements were taken by using picture archiving and communication systems (PACS) software and the volume of the MACS was measured with Seg 3D software. The mastoid volume increased on average 817.5 mm3 between the pre- and the postoperative imaging time point. The linear distances measured between anatomical points like the round window (RW)- bony ear canal (BEC), the RW-sigmoid sinus (SS), the BEC-SS, and the mastoid tip (MT)-superior semicircular canal (SSC) increased significantly with the age of the patient at both the pre-op and post-op time points. The linear measurements between key anatomical points and mastoid volume showed a positive linear correlation. The correlation between linear measurement and volume were significant between the MT-SSC (r = 0.706, p = 0.002), RW-SS (r = 0.646, p = 0.005) and RW-BEC (r = 0.646, p = 0.005). Based on our findings from the CI implanted patients and comparing it with the previous literature findings from non-CI implanted patients, we could say that the CI surgery seem to have no effect on the development of mastoid volume in children.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Humanos , Niño , Implantación Coclear/métodos , Apófisis Mastoides/diagnóstico por imagen , Apófisis Mastoides/cirugía , Ventana Redonda/cirugía , Oído/cirugía
10.
Laryngoscope Investig Otolaryngol ; 8(6): 1666-1672, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38130266

RESUMEN

Objective: To report a reliable method in obtaining optimal cochlear basal turn and cross-section (c/s) of internal auditory canal (IAC) supporting Cochlear implantation (CI) procedure. Materials and Methods: Computer tomography (CT) and magnetic resonance image (MRI) scans of potential CI candidates from 2018 to 2022 from the tertiary center were considered for analysis. Slicer software was used in three-dimensional (3D) segmentation of inner ear and for capturing the cochlear basal turn. Results: A total of 1932 head scans were made available for the analysis and out of which 1866 scans had normal anatomy (NA) inner ear. Incomplete partition (IP) type-I was identified in 19 ears, IP type-II in 27 ears, IP type-III in 6 ears, cochlear hypoplasia (CH) type-I in 6 ears, CH type-II in 1 ear, CH type-III in 3 ears, and CH type-IV is 3 ears, and enlarged vestibular aqueduct syndrome in 1 ear. 3D segmented inner ear helped in successfully obtaining the cochlear basal turn and the c/s of IAC in all anatomical types. Time taken to capture the cochlear basal turn with the help of 3D segmented inner ear was <1 min. Within the NA category, five cases showed scalar ossification, and its extent was identified in the cochlear basal turn. Conclusion: The identification and the extent of ossification in the scala tympani, shape of the basal turn, and the cochlear size measurement in cochlear basal turn has high clinical relevance as this helps in surgical planning and in choosing appropriate electrode length. Level of evidence: Level 2 to the best of our understanding.

11.
Otol Neurotol Open ; 3(4): e045, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38516541

RESUMEN

Objective: The suitable electrode array choice is broadly discussed in cochlear implantation surgery. Whether to use a shorter electrode length under the aim of structure preservation versus choosing a longer array to achieve a greater cochlear coverage is a matter of debate. The aim of this review is to identify the impact of the insertion depth of a cochlear implant (CI) electrode array on CI users' speech perception outcomes. Databases Reviewed: PubMed was searched for English-language articles that were published in a peer-reviewed journal from 1997 to 2022. Methods: A systematic electronic search of the literature was carried out using PubMed to find relevant literature on the impact of insertion depth on speech perception. The review was conducted according to the preferred reporting items for systematic reviews and meta-analyses guidelines of reporting. Studies in both, children and adults with pre- or postlingual hearing loss, implanted with a CI were included in this study. Articles written in languages other than English, literature reviews, meta-analyses, animal studies, histopathological studies, or studies pertaining exclusively to imaging modalities without reporting correlations between insertion depth and speech outcomes were excluded. The risk of bias was determined using the "Risk of Bias in Nonrandomized Studies of Interventions" tool. Articles were extracted by 2 authors independently using predefined search terms. The titles and abstracts were screened manually to identify studies that potentially meet the inclusion criteria. The extracted information included: the study population, type of hearing loss, outcomes reported, devices used, speech perception outcomes, insertion depth (linear insertion depth and/or the angular insertion depth), and correlation between insertion depth and the speech perception outcomes. Results: A total of 215 relevant studies were assessed for eligibility. Twenty-three studies met the inclusion criteria and were analyzed further. Seven studies found no significant correlation between insertion depth and speech perception outcomes. Fifteen found either a significant positive correlation or a positive effect between insertion depth and speech perception. Only 1 study found a significant negative correlation between insertion depth and speech perception outcomes. Conclusion: Although most studies reported a positive effect of insertion depth on speech perception outcomes, one-third of the identified studies reported no correlation. Thus, the insertion depth must be considered as a contributing factor to speech perception rather than as a major decisive criterion. Registration: This review has been registered in PROSPERO, the international prospective register of systematic reviews (CRD42021257547), available at https://www.crd.york.ac.uk/PROSPERO/.

12.
Front Neurosci ; 16: 857855, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401101

RESUMEN

Object: To investigate the long-term development of auditory and speech in patients with common cavity deformity (CCD) after cochlear implantation (CI) and its relationship to imaging characteristics. Methods: Twenty-three CCD patients and 59 age- and sex-matched CI children with normal inner ear structure were recruited. The auditory and speech development of these two groups were evaluated at 0, 1, 3, 6, 12, and 18 months after CI activation using four parent reports questionnaires [Categories of Auditory Performance (CAP), Speech Intelligibility Rating (SIR), Meaningful Auditory Integration Scale/Infant-Toddler Meaningful Auditory Integration Scale (MAIS/ITMAIS), and Meaningful Use of Speech Scale (MUSS)]. Computed tomography-based 3-dimensional reconstruction of the surgical side of 18 CCD children was performed, the volume and surface area were calculated. Correlation analysis was performed on the imaging performance and post-operative outcomes. Results: The percentages of MAIS/IT-MAIS scores and CAP scores at different evaluation time points are significantly different (p < 0.05). When comparing SIR results across time points, significant growth was observed in most of the comparisons. In addition, significant differences (p < 0.05) are observed among the percentages of MUSS scores at different time points except the comparison between 0 and 1 month after CI activation. Patients in the CCD group had poorer auditory and speech performances at different stages after CI compared with those in the control group. According to the reconstruction of CCD patients, the volume ranged from 12.21 to 291.96 mm3; the surface area ranged from 27.81 to 284.7 mm2. When the lumen surface area was <190.45 mm2 or the volume was <157.91 mm3, the survival time for CCD children to achieve a CAP score of 4 after CI was significantly shorter. Conclusion: Cochlear implantation are less effective in CCD patients than in patients with normal inner ear structures, but they can still achieve significant improvement post-operatively. The morphology and size of the inner ear vary in CCD patients, which reflects the degree of inner ear development influences the outcome after CI surgery.

13.
Ear Nose Throat J ; : 1455613221106221, 2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35861389

RESUMEN

OBJECTIVES: To study the changes in the coiled configuration of electrode excess lead in the mastoid cavity in the cochlear implant recipients over time. METHODS: Post-operative CT scans at two different appointments of fourteen patients with cochlear implants (CI) were retrospectively analyzed using a DICOM viewer software (3D-slicer). Mastoid thickness (MT) was measured in the oblique coronal plane from the round window (RW) entrance to the mastoid edge and inter-cochlear distance (ICD) was measured in the axial plane at the fundus level between two ears. 3D segmentation of the entire inner ear of both sides and coiled electrode excess lead was performed to visually compare the changes in coiled configuration between the two CT scan time points. RESULT: MT and ICD increased logarithmically with the patient's age, as has been measured from both the 1st and the 2nd CT scans and a weak linear correlation between MT and ICD was observed. Growth in MT and ICT measured between the time of 1st and 2nd CT scans showed a strong linear correlation. In eight cases, changes in the electrode excess lead have been observed in the 2nd CT scan, either a change in the coiling configuration of electrode excess lead or shifted laterally toward the mastoid edge. The ICD growth between the 1st and the 2nd CT scans was >2 mm in only seven cases and all of them were children. All other six cases had no observed changes in the coiled electrode lead. In addition, the mastoid growth between the 1st and the 2nd CT scan was >2.5 mm in only 4 cases. CONCLUSION: Coiled configuration of electrode excess lead could change when the MT and ICD increased over time.

14.
Laryngoscope Investig Otolaryngol ; 7(6): 2020-2028, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36544941

RESUMEN

Objective: We hypothesize that visualizing inner-ear systematically in both cochlear view (oblique coronal plane) and in mid-modiolar section (axial plane) and following three sequential steps simplifies, identification of inner-ear malformation types. Methods: Pre-operative computer-tomography (CT) scans of temporal bones of 112 ears with various inner ear malformation (IEM) types were taken for analysis. Images were analyzed using DICOM viewers, 3D slicer, and OTOPLAN®. The inner-ear was captured in the oblique-coronal plane for the measurement of length and width of cochlear basal turn which is also called as A-, and B-values respectively (Step 1). In the same plane, the angular-turns of lateral-wall (LW) of cochlear basal turn were measured (Step 2). As Step 3, the mid-modiolar section of inner ear was captured in the axial plane by following the A-value and perpendicular to cochlear view. From the mid-modiolar section, the outer-contour of inner ear was captured manually by following contrasting gray area between fluid filled and bony promontory and was compared to known resembling objects to identify IEM types (Step 3). Results: Following reference values have emerged from our analysis: A-, and B-values (Step 1) on average are >8 mm and >5.5 mm respectively, in normal cochleae (NA), enlarged vestibular aqueduct syndrome (EVAS), incomplete partition (IP) type-I and -II, whereas it is <8 mm and <5.5 mm respectively, in IP type-III and cochlear hypoplasia (CH). Angular-turn of LW is consistently observed in cochlear basal turn (Step 2), is 540° in NA and EVAS, 450° in IP-II, and 360° in IP types I & III. In subjects with CH type, angular-turn of LW is either 360° or 450° or 540°. In true mid-modiolar section, outer-contour of inner-ear (Step-3), other than in CH and cystic inner-ear malformations, resembles recognizable shapes of known objects. Absence of EVA is an additional characteristic that confirms diagnosis of CH when the A-, B-values, and angular-turn of LW can be similar to other anatomical types. Drawing a straight line along posterior edge of internal auditory canal (IAC) in axial view can differentiate a true common cavity (CC) from cochlear aplasia-vestibular cavity (VC). Conclusion: Three-step process proposed in this study captures inner-ear in cochlear view as well in mid-modiolar sections visualizing key features of inner-ear in identification of IEM types. Level of Evidence: Level 1.

15.
Otol Neurotol ; 43(8): e814-e819, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35970155

RESUMEN

A "gold standard" for quantitatively diagnosing inner ear malformations (IEMs) and a consensus on normative measurements are lacking. Reference ranges and cutoff values of inner ear dimensions may add in distinguishing IEM types. This study evaluates the volumes of the cochlea and vestibular system in different types of IEM. STUDY DESIGN: Retrospective cohort. SETTING: Tertiary academic center. PATIENTS: High-resolution CT scans of 115 temporal bones (70 with IEM; cochlear hypoplasia [CH]; n = 19), incomplete partition (IP) Types I and III (n = 16), IP Type II with an enlarged vestibular aqueduct (Mondini malformation; n = 16), enlarged vestibular aqueduct syndrome (n = 19), and 45 controls. INTERVENTIONS: Volumetry by software-based, semiautomatic segmentation, and 3D reconstruction. MAIN OUTCOME MEASURES: Differences in volumes among IEM and between IEM types and controls; interrater reliability. RESULTS: Compared with controls (mean volume, 78.0 mm3), only CH showed a significantly different cochlear volume (mean volume, 30.2 mm3; p < 0.0001) among all types of IEM. A cutoff value of 60 mm3 separated 100% of CH cases from controls. Compared with controls, significantly larger vestibular system volumes were found in Mondini malformation (mean difference, 22.9 mm3; p = 0.009) and IP (mean difference, 24.1 mm3; p = 0.005). In contrast, CH showed a significantly smaller vestibular system volume (mean difference, 41.1 mm3; p < 0.0001). A good interrater reliability was found for all three-dimensional measurements (ICC = 0.86-0.91). CONCLUSION: Quantitative reference values for IEM obtained in this study were in line with existing qualitative diagnostic characteristics. A cutoff value less than 60 mm3 may indicate an abnormally small cochlea. Normal reference values for volumes of the cochlea and vestibular system may aid in diagnosing IEM.


Asunto(s)
Implantación Coclear , Pérdida Auditiva Sensorineural , Acueducto Vestibular , Vestíbulo del Laberinto , Cóclea/anomalías , Cóclea/diagnóstico por imagen , Pérdida Auditiva Sensorineural/diagnóstico por imagen , Humanos , Reproducibilidad de los Resultados , Estudios Retrospectivos , Acueducto Vestibular/anomalías , Acueducto Vestibular/diagnóstico por imagen , Vestíbulo del Laberinto/anomalías , Vestíbulo del Laberinto/diagnóstico por imagen
16.
Artículo en Inglés | MEDLINE | ID: mdl-33474539

RESUMEN

BACKGROUND AND OBJECTIVE: The size of the cochlea varies a lot among the human population bringing the necessity for electrode arrays to be available in various lengths irrespective of the cochlear implant (CI) brand. This research software helps in the estimation of the patient's cochlear duct length (CDL) which is then used for the simulation of the correct length electrode array matching the patient's cochlear size and as well in getting the patient specific cochlear frequency map. METHODS: Visual Studio Express 2012 for Windows Desktop is used in the architecture of this research software. The basal turn diameter of the cochlea ("A" value) needs to be measured from the pre-operative computed tomography (CT) image of the patient's temporal bone. This "A" will be taken as the input for the CDL equations proposed by Alexiades et al for estimating the CDL along the basilar membrane for various insertion depths. Greenwood's equation is then used in combination with the CDL for the full length of the cochlea in getting the patient specific frequency map. RESULTS: The research software with the help of the "A" value as input, with few button clicks, gives the patient specific CDL for various insertion depths and the Greenwood's frequency map. The users have the choice to select any electrode array of their choice and place it under the frequency map to see how good it fits to that particular patient's cochlea. Also, given the possibility to drag and move the electrode array picture to mimic the post-operative actual electrode insertion depth. CONCLUSIONS: This research software simplifies the overall process of CDL estimation and in getting the patient specific cochlear frequency map. The clinicians get the chance to simulate placing the various electrode array lengths in patient cochlea in identifying the best fit electrode. This could help in pushing the CI field into the concept of individualized CI electrode array solution that ultimately benefits the patients.

17.
Artículo en Inglés | MEDLINE | ID: mdl-33474544

RESUMEN

With cochlear implantation (CI) being the standard of care for profoundly deaf cases, more and more patients with low frequency residual hearing are currently being treated with CI. In view of preserving the residual hearing, the ultimate aim of both the surgeons and the CI companies is to achieve zero-degree of electrode insertion trauma. Variations in the size and shape of cochlea, cross-sectional dimensions of ST, electrode insertion techniques with and without metal stylet rod and the experience level of the operating surgeons, all play a role in the electrode array related insertion trauma. An effective electrode design must include flexible array to accommodate the cochlear shape variation, electrode with variety of array lengths to support the concept of cochlear size specific electrode array and finally smaller cross-sectional dimensions of electrode array in matching the cross-sectional dimensions of ST. As per published reports, FLEX electrode array design offers minimal degree of electrode insertion trauma along with the possibility of patient specific electrode array length matching their cochlear size. Looking at the cross-sectional dimensions of FLEX electrode array along with its volume, it appear to be highly safe to the cochlea by not taking too much volume inside the ST. To offer additional support, otological pre-planning software tool like OTOPLAN is now clinically available in measuring the cochlear size in finding the best electrode array match along with the possibilities of anatomy based post-operative speech processor fitting.

18.
Acta Otolaryngol ; 141(sup1): 1-21, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33818259

RESUMEN

Binaural hearing has certain benefits while listening in noisy environments. It provides the listeners with access to time, level and spectral differences between sound signals, perceived by the two ears. However, single sided deaf (SSD) or unilateral cochlear implant (CI) users cannot experience these binaural benefits due to the acoustic input coming from a single ear. The translational research on bilateral CIs started in the year 1998, initiated by J. Müller and J. Helms from Würzburg, Germany in association with MED-EL. Since then, several clinical studies were conducted by different research groups from across the world either independently or in collaboration with MED-EL. As a result, the bilateral CI has become the standard of care in many countries along with reimbursement by the health care systems. Recent data shows that children particularly, are given high priority for the bilateral CI implantation, most often performed simultaneously in a single surgery, as the binaural hearing has a positive effect on their language development. This article covers the milestones of translational research from the first concept to the widespread clinical use of bilateral CI.


Asunto(s)
Implantación Coclear/tendencias , Implantes Cocleares/tendencias , Pérdida Auditiva Bilateral/cirugía , Implantación Coclear/historia , Implantes Cocleares/historia , Pruebas Auditivas , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Localización de Sonidos , Pruebas de Discriminación del Habla
19.
Acta Otolaryngol ; 141(sup1): 157-177, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33818260

RESUMEN

Optimal matching of an electrode array to the cochlear anatomy plays a key role in bringing the best benefit of CI technology to the users. Even within the category of normal anatomy cochlea, the size variation is huge justifying MED-EL's FLEX electrode array to be available in five different lengths. Within the malformed inner-ear category the anatomical variation is huge, convincing MED-EL to custom-design the electrode array as per the request from the operating surgeons. Thanks to G. Bredberg, M. Beltrame, L. Sennaroglu, J. Gavilan, S. Plontke, T. Lenarz, J. Müller, and few others for their valuable suggestions on unique electrode designs satisfying various needs. Translational research efforts at MED-EL in cooperation with CI surgeons from across the world led to the implantation of a variety of electrode array designs in patients with special cochlear needs.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Diseño de Prótesis , Cóclea/anomalías , Implantación Coclear/historia , Implantes Cocleares/historia , Oído Interno/anomalías , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Osificación Heterotópica/complicaciones
20.
Acta Otolaryngol ; 141(sup1): 82-105, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33818261

RESUMEN

The cochlear implant (CI) as a treatment option for single-sided deafness (SSD) started with a clinical study looking in to the influence of cochlear implantation with a MED-EL device on incapacitating unilateral tinnitus in SSD. The study began in 2003 and was conducted by P. Van de Heyning and his team in Antwerp, Belgium. The first CI in SSD without tinnitus in Germany was implanted by J. Mueller and R. Jacob in Koblenz in 2005. Translational research activities took place since then to evaluate the CI as a treatment option for SSD not only in adults but also in children. They assessed the hearing performance of SSD patients implanted with CI, importance of long electrode arrays in SSD patients, degree of acceptance of CI by SSD children, importance of early CI implantation in SSD children in developing language skills, music enjoyment by hearing with two ears and evidence on spiral ganglion cell body distribution. In 2013, MED-EL was the first CI manufacturer to receive the CE mark for the indication of SSD and asymmetric hearing loss (AHL) in adults and children. In 2019, MED-EL was the first CI manufacturer to get its CI device approved for patients over the age of five with SSD and AHL, by the FDA in the USA. This article covers the milestones of translational research from the first concept to the widespread clinical use of CI in SSD.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Pérdida Auditiva Unilateral/cirugía , Audiometría de Tonos Puros , Umbral Auditivo , Implantación Coclear/historia , Implantes Cocleares/historia , Aprobación de Recursos , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Pruebas de Discriminación del Habla , Percepción del Habla , Ganglio Espiral de la Cóclea/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA