Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chemphyschem ; 25(6): e202300658, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38269420

RESUMEN

Synthesising and designing pseudocapacitive material with good electrochemical and electrocatalytic behaviour is essential to use as supercapacitor as well as non-enzymatic glucose sensor electrode. In this work, NiCo2 S4 nanoparticles decorated onto the 2D-Carbyne nanosheets are achieved by the solvothermal process. The as-prepared NiCo2 S4 @2D-Carbyne provides rich reaction sites and better diffusion pathways. On usage as an electrode for supercapacitor application, the NiCo2 S4 @2D-Carbyne exhibits the specific capacitance of about 2507 F g-1 at 1 A g-1 . In addition, the fabricated hybrid device generates an energy density of 52.2 Wh kg-1 at a power density of 1.01 kW kg-1 . Besides, the glucose oxidation behaviour of NiCo2 S4 @2D-Carbyne modified GCE has also been performed. The diffusion of glucose from the electrolyte to the electrode obeys the kinetic control process. Furthermore, the fabricated NiCo2 S4 @2D-Carbyne non-enzymatic glucose sensor exhibits a limit of detection of about 34.5 µM with a sensitivity of about 135 µA mM-1 cm-2 . These findings highlight the need to design and synthesis electrode materials with adequate electrolyte-electrode contact, strong structural integrity, and rapid ion/electron transport.

2.
Bioprocess Biosyst Eng ; 46(12): 1755-1763, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37855914

RESUMEN

The non-enzymatic electrochemical sensors are attractive due to their high sensitivity, quick detection, low cost, and simple construction. Hence, in this work, a non-enzymatic biosensor was constructed with NiCo2O4 nanoparticles (~ 82 nm) decorated over Ti2NbC2 nanosheets by an in-situ method. The crystal structure, phase purity, morphology and elemental composition of the synthesized NiCo2O4/Ti2NbC2 nanohybrid was investigated using XRD, Raman and FESEM analysis. The electrocatalytic and electrochemical behaviour of the prepared nanohybrid was investigated using cyclic voltammetry and amperometry analysis. Hybrid of NiCo2O4/Ti2NbC2 produces a biocompatible, electrochemically active surface with enhanced electrical conductivity. The enhanced surface area of NiCo2O4 and superior electrical conductivity of Ti2NbC2 nanosheets helped to develop non-enzymatic electrochemical glucose sensor with enhanced sensitivity (425.6 µA mM-1cm-2), low limit of detection and quick response time that satisfy glucose detection applications. Thus, the developed non-enzymatic electrochemical glucose sensor has excellent electrochemical properties and making it as a strong candidate for the detection of glucose concentration in sweat.


Asunto(s)
Técnicas Biosensibles , Glucosa , Glucosa/análisis , Sudor/química , Técnicas Electroquímicas/métodos , Titanio , Técnicas Biosensibles/métodos , Electrodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA