Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 27(23)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36500551

RESUMEN

Vertical-aligned CuO nanowires have been directly fabricated on Cu foil through a facile thermal oxidation process by a hotplate at 550 °C for 6 h under ambient conditions. The intermediate layer of resorcinol-formaldehyde (RF) and silver (Ag) nanoparticles can be sequentially deposited on Cu nanowires to form CuO@RF@Ag core-shell nanowires by a two-step wet chemical approach. The appropriate resorcinol weight and silver nitrate concentration can be favorable to grow the CuO@RF@Ag nanowires with higher surface-enhanced Raman scattering (SERS) enhancement for detecting rhodamine 6G (R6G) molecules. Compared with CuO@Ag nanowires grown by ion sputtering, CuO@RF@Ag nanowires exhibited a higher SERS enhancement factor of 5.33 × 108 and a lower detection limit (10-12 M) for detecting R6G molecules. This result is ascribed to the CuO@RF@Ag nanowires with higher-density hot spots and surface-active sites for enhanced high SERS enhancement, good reproducibility, and uniformity. Furthermore, the CuO@RF@Ag nanowires can also reveal a high-sensitivity SERS-active substrate for detecting amoxicillin (10-10 M) and 5-fluorouracil (10-7 M). CuO@RF@Ag nanowires exhibit a simple fabrication process, high SERS sensitivity, high reproducibility, high uniformity, and low detection limit, which are helpful for the practical application of SERS in different fields.


Asunto(s)
Nanopartículas del Metal , Nanocables , Espectrometría Raman/métodos , Nanopartículas del Metal/química , Reproducibilidad de los Resultados , Plata , Nanocables/química , Formaldehído
2.
Nanoscale ; 9(35): 13235-13244, 2017 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-28853469

RESUMEN

Novel one-dimensional (1D) heterostructure arrays composed of CuO nanowire cores, intermediate In2S3 nanostructures, and ZnO nanorod sheaths (i.e. CuO/In2S3/ZnO heterostructure arrays) have been successfully synthesized by a multi-step process. First, single-crystalline CuO nanowires were directly grown on flexible Cu mesh substrates using a one-step annealing process under ambient conditions. Second, In2S3 nanostructures and ZnO nanorods were sequentially grown on the CuO nanowires by a two-step hydrothermal method at low reaction temperature. The morphology, crystal structures, and optical properties of the CuO/In2S3/ZnO heterostructure arrays were studied by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, energy-dispersive spectroscopy, and photoluminescence spectroscopy. The resultant ternary CuO/In2S3/ZnO heterostructure arrays exhibit excellent photocatalytic activity in the photodegradation of rhodamine 6G (R6G) under 10 W UV light irradiation, which is much higher than that of single-component (CuO nanowire arrays) or two-component systems (CuO/In2S3 heterostructure arrays). Furthermore, the reusability test demonstrates that the CuO/In2S3/ZnO heterostructure arrays on the Cu mesh still maintain high photocatalytic activity in the degradation of three kinds of organic pollutants even after five cycles, without any significant decline. These findings provide an insight into the design and synthesis of new CuO-based composites to effectively improve their photocatalytic performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA