Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Appl Toxicol ; 43(8): 1225-1241, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36869434

RESUMEN

The prevalence of allergic diseases is constantly increasing since few decades. Anthropogenic ultrafine particles (UFPs) and allergenic aerosols is highly involved in this increase; however, the underlying cellular mechanisms are not yet understood. Studies observing these effects focused mainly on singular in vivo or in vitro exposures of single particle sources, while there is only limited evidence on their subsequent or combined effects. Our study aimed at evaluating the effect of subsequent exposures to allergy-related anthropogenic and biogenic aerosols on cellular mechanism exposed at air-liquid interface (ALI) conditions. Bronchial epithelial BEAS-2B cells were exposed to UFP-rich combustion aerosols for 2 h with or without allergen pre-exposure to birch pollen extract (BPE) or house dust mite extract (HDME). The physicochemical properties of the generated particles were characterized by state-of-the-art analytical instrumentation. We evaluated the cellular response in terms of cytotoxicity, oxidative stress, genotoxicity, and in-depth gene expression profiling. We observed that single exposures with UFP, BPE, and HDME cause genotoxicity. Exposure to UFP induced pro-inflammatory canonical pathways, shifting to a more xenobiotic-related response with longer preincubation time. With additional allergen exposure, the modulation of pro-inflammatory and xenobiotic signaling was more pronounced and appeared faster. Moreover, aryl hydrocarbon receptor (AhR) signaling activation showed to be an important feature of UFP toxicity, which was especially pronounced upon pre-exposure. In summary, we were able to demonstrate the importance of subsequent exposure studies to understand realistic exposure situations and to identify possible adjuvant allergic effects and the underlying molecular mechanisms.


Asunto(s)
Contaminantes Atmosféricos , Hipersensibilidad , Humanos , Material Particulado/análisis , Contaminantes Atmosféricos/química , Alérgenos/toxicidad , Xenobióticos , Células Epiteliales/metabolismo , Aerosoles/toxicidad , Tamaño de la Partícula
2.
Toxicol Mech Methods ; 33(5): 411-426, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36519334

RESUMEN

Particularly since the wide-ranging health effects of asbestos exposure became known, great emphasis has been placed on detailed toxicity testing of known but also newly developed fiber materials. Exposure to respirable pollutants like fibers can lead to tissue injury causing lung diseases such as pulmonary fibrosis or cancer. In order to detect the toxic potential of such aerosols at an early stage, the development of suitable test systems is essential. In this study, we illustrate the development of an advanced in vitro cell model closely resembling the physiological structure of the alveoli, and we highlight its advantages over simpler models to predict pro-fibrotic changes. For this reason, we analyzed the cytotoxic effects of fiber-like multi-walled carbon nanotubes after 24 and 48 h exposure, and we investigated inflammatory, genotoxic and pro-fibrotic changes occurring in the developed triple culture consisting of lung epithelial cells, macrophages and fibroblasts compared to a co-culture of epithelial cells and fibroblasts or a mono culture of epithelial cells. In summary, the triple culture system is more precisely able to detect a pro-fibrotic phenotype including epithelial-mesenchymal transition as well as secondary genotoxicity, even if exhibiting lower cytotoxicity in contrast to the less advanced systems. These effects might be traced back to the complex interplay between the different cell types, all of which play an important role in the inflammatory response, which precedes wound healing, or even fibrosis or cancer development.


Asunto(s)
Nanotubos de Carbono , Fibrosis Pulmonar , Humanos , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Nanotubos de Carbono/toxicidad , Nanotubos de Carbono/química , Aerosoles y Gotitas Respiratorias , Pulmón , Comunicación Celular
3.
Anal Biochem ; 618: 114127, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33571488

RESUMEN

The aim of this study was to explore the impact of three different standard reference particulate matter (ERM-CZ100, SRM-1649, and SRM-2975) on epigenetic DNA modifications including cytosine methylation, cytosine hydroxymethylation, and adenine methylation. For the determination of low levels of adenine methylation, we developed and applied a novel DNA nucleobase chemical derivatization and combined it with liquid chromatography tandem mass spectrometry. The developed method was applied for the analysis of epigenetic modifications in monocytic THP-1 cells exposed to the three different reference particulate matter for 24 h and 48 h. The mass fraction of epigenetic active elements As, Cd, and Cr was analyzed by inductively coupled plasma mass spectrometry. The exposure to fine dust ERM-CZ100 and urban dust SRM-1649 decreased cytosine methylation after 24 h exposure, whereas all 3 p.m. increased cytosine hydoxymethylation following 24 h exposure, and the epigenetic effects induced by SRM-1649 and diesel SRM-2975 were persistent up to 48 h exposure. The road tunnel dust ERM-CZ100 significantly increased adenine methylation following the shorter exposure time. Two-dimensional scatters analysis between different epigenetic DNA modifications were used to depict a significantly negative correlation between cytosine methylation and cytosine hydroxymethylation supporting their possible functional relationship. Metals and polycyclic aromatic hydrocarbons differently shapes epigenetic DNA modifications.


Asunto(s)
Adenina , Metilación de ADN/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Material Particulado/toxicidad , Hidrocarburos Policíclicos Aromáticos/toxicidad , Espectrometría de Masas en Tándem , Adenina/análogos & derivados , Adenina/metabolismo , Cromatografía Liquida , Epigenómica , Humanos , Células THP-1
4.
Part Fibre Toxicol ; 17(1): 27, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32539833

RESUMEN

BACKGROUND: Wood combustion emissions have been studied previously either by in vitro or in vivo models using collected particles, yet most studies have neglected gaseous compounds. Furthermore, a more accurate and holistic view of the toxicity of aerosols can be gained with parallel in vitro and in vivo studies using direct exposure methods. Moreover, modern exposure techniques such as air-liquid interface (ALI) exposures enable better assessment of the toxicity of the applied aerosols than, for example, the previous state-of-the-art submerged cell exposure techniques. METHODS: We used three different ALI exposure systems in parallel to study the toxicological effects of spruce and pine combustion emissions in human alveolar epithelial (A549) and murine macrophage (RAW264.7) cell lines. A whole-body mouse inhalation system was also used to expose C57BL/6 J mice to aerosol emissions. Moreover, gaseous and particulate fractions were studied separately in one of the cell exposure systems. After exposure, the cells and animals were measured for various parameters of cytotoxicity, inflammation, genotoxicity, transcriptome and proteome. RESULTS: We found that diluted (1:15) exposure pine combustion emissions (PM1 mass 7.7 ± 6.5 mg m- 3, 41 mg MJ- 1) contained, on average, more PM and polycyclic aromatic hydrocarbons (PAHs) than spruce (PM1 mass 4.3 ± 5.1 mg m- 3, 26 mg MJ- 1) emissions, which instead showed a higher concentration of inorganic metals in the emission aerosol. Both A549 cells and mice exposed to these emissions showed low levels of inflammation but significantly increased genotoxicity. Gaseous emission compounds produced similar genotoxicity and a higher inflammatory response than the corresponding complete combustion emission in A549 cells. Systems biology approaches supported the findings, but we detected differing responses between in vivo and in vitro experiments. CONCLUSIONS: Comprehensive in vitro and in vivo exposure studies with emission characterization and systems biology approaches revealed further information on the effects of combustion aerosol toxicity than could be achieved with either method alone. Interestingly, in vitro and in vivo exposures showed the opposite order of the highest DNA damage. In vitro measurements also indicated that the gaseous fraction of emission aerosols may be more important in causing adverse toxicological effects. Combustion aerosols of different wood species result in mild but aerosol specific in vitro and in vivo effects.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Daño del ADN , Exposición por Inhalación/efectos adversos , Picea/química , Pinus/química , Humo/efectos adversos , Madera , Células A549 , Aerosoles , Contaminantes Atmosféricos/análisis , Animales , Técnicas de Cultivo de Célula , Supervivencia Celular/efectos de los fármacos , Citocinas/metabolismo , Calefacción , Humanos , Exposición por Inhalación/análisis , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Tamaño de la Partícula , Células RAW 264.7 , Humo/análisis , Especificidad de la Especie , Transcriptoma/efectos de los fármacos
5.
Part Fibre Toxicol ; 15(1): 32, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-30016969

RESUMEN

BACKGROUND: Genotoxicity is an important toxicological endpoint due to the link to diseases such as cancer. Therefore, an increased understanding regarding genotoxicity and underlying mechanisms is needed for assessing the risk with exposure to nanoparticles (NPs). The aim of this study was to perform an in-depth investigation regarding the genotoxicity of well-characterized Ni and NiO NPs in human bronchial epithelial BEAS-2B cells and to discern possible mechanisms. Comparisons were made with NiCl2 in order to elucidate effects of ionic Ni. METHODS: BEAS-2B cells were exposed to Ni and NiO NPs, as well as NiCl2, and uptake and cellular dose were investigated by transmission electron microscopy (TEM) and inductively coupled plasma mass spectrometry (ICP-MS). The NPs were characterized in terms of surface composition (X-ray photoelectron spectroscopy), agglomeration (photon cross correlation spectroscopy) and nickel release in cell medium (ICP-MS). Cell death (necrosis/apoptosis) was investigated by Annexin V-FITC/PI staining and genotoxicity by cytokinesis-block micronucleus (cytome) assay (OECD 487), chromosomal aberration (OECD 473) and comet assay. The involvement of intracellular reactive oxygen species (ROS) and calcium was explored using the fluorescent probes, DCFH-DA and Fluo-4. RESULTS: NPs were efficiently taken up by the BEAS-2B cells. In contrast, no or minor uptake was observed for ionic Ni from NiCl2. Despite differences in uptake, all exposures (NiO, Ni NPs and NiCl2) caused chromosomal damage. Furthermore, NiO NPs were most potent in causing DNA strand breaks and generating intracellular ROS. An increase in intracellular calcium was observed and modulation of intracellular calcium by using inhibitors and chelators clearly prevented the chromosomal damage. Chelation of iron also protected against induced damage, particularly for NiO and NiCl2. CONCLUSIONS: This study has revealed chromosomal damage by Ni and NiO NPs as well as Ni ionic species and provides novel evidence for a calcium-dependent mechanism of cyto- and genotoxicity.


Asunto(s)
Calcio/metabolismo , Aberraciones Cromosómicas/inducido químicamente , Pulmón/efectos de los fármacos , Mutágenos/toxicidad , Nanopartículas/toxicidad , Níquel/toxicidad , Muerte Celular/efectos de los fármacos , Línea Celular , Ensayo Cometa , Daño del ADN , Humanos , Pulmón/patología , Propiedades de Superficie
6.
Mutagenesis ; 32(1): 127-137, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27382040

RESUMEN

The widespread production and use of nanoparticles calls for faster and more reliable methods to assess their safety. The main aim of this study was to investigate the genotoxicity of three reference TiO2 nanomaterials (NM) within the frame of the FP7-NANoREG project, with a particular focus on testing the applicability of mini-gel comet assay and micronucleus (MN) scoring by flow cytometry. BEAS-2B cells cultured under serum-free conditions were exposed to NM100 (anatase, 50-150nm), NM101 (anatase, 5-8nm) and NM103 (rutile, 20-28nm) for 3, 24 or 48h mainly at concentrations 1-30 µg/ml. In the mini-gel comet assay (eight gels per slide), we included analysis of (i) DNA strand breaks, (ii) oxidised bases (Fpg-sensitive sites) and (iii) light-induced DNA damage due to photocatalytic activity. Furthermore, MN assays were used and we compared the results of more high-throughput MN scoring with flow cytometry to that of cytokinesis-block MN cytome assay scored manually using a microscope. Various methods were used to assess cytotoxic effects and the results showed in general no or low effects at the doses tested. A weak genotoxic effect of the tested TiO2 materials was observed with an induction of oxidised bases for all three materials of which NM100 was the most potent. When the comet slides were briefly exposed to lab light, a clear induction of DNA strand breaks was observed for the anatase materials, but not for the rutile. This highlights the risk of false positives when testing photocatalytically active materials if light is not properly avoided. A slight increase in MN formation for NM103 was observed in the different MN assays at the lower doses tested (1 and 5 µg/ml). We conclude that mini-gel comet assay and MN scoring using flow cytometry successfully can be used to efficiently study cytotoxic and genotoxic properties of nanoparticles.


Asunto(s)
Ensayo Cometa , Daño del ADN , Células Epiteliales/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Micronúcleos con Defecto Cromosómico/inducido químicamente , Pruebas de Micronúcleos , Bronquios/efectos de los fármacos , Línea Celular , ADN/efectos de los fármacos , Células Epiteliales/metabolismo , Humanos , Nanopartículas del Metal/química , Titanio/farmacología , Titanio/toxicidad
7.
Mutagenesis ; 31(6): 643-653, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27386876

RESUMEN

Micronucleus (MN) assay is extensively used to biomonitor aneuploidy and clastogenicity of genotoxic compounds. However, the suitability of this assay for early life stages of model fish species is still poorly documented. In this study, the determination of MN using flow cytometry was successfully applied for the first time to zebrafish (Danio rerio) larvae. Mitomycin C (MMC), etoposide (ETO), cyclophosphamide, demecolcine (COL), benzo[a]pyrene (BP) and dibenzo[def,p]chrysene (DBC) were selected as model genotoxicants. The method was first confirmed in human HepG2 liver cells and then applied in vivo on isolated cells from exposed 4 days post fertilisation zebrafish larvae. All tested compounds induced MN formation. The flow cytometry results were validated by a strong correlation with results from a standard MN microscopy analysis (P = 0.002). Moreover, flow cytometry analysis enabled the detection of an up to 3.7-fold increase of hypodiploidy in zebrafish exposed to MMC, COL, BP or DBC. MMC, COL and DBC induced more than a 2-fold MN increase by flow cytometry and were therefore considered as the most suitable positive controls for in vivo zebrafish MN determination. These findings make important contribution by proposing a new reliable and sensitive method for using zebrafish as a model for genotoxicity monitoring.


Asunto(s)
Monitoreo del Ambiente/métodos , Citometría de Flujo , Larva/efectos de los fármacos , Micronúcleos con Defecto Cromosómico/inducido químicamente , Mutágenos/toxicidad , Pez Cebra/genética , Animales , Células Hep G2 , Humanos , Larva/genética , Pruebas de Micronúcleos
8.
Mutagenesis ; 31(5): 511-29, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27056944

RESUMEN

The FP7 Sanowork project was aimed to minimise occupational hazard and exposure to engineered nanomaterials (ENM) through the surface modification in order to prevent possible health effects. In this frame, a number of nanoparticles (NP) have been selected, among which zirconium (ZrO2) and titanium (TiO2) dioxide. In this study, we tested ZrO2 NP and TiO2 NP either in their pristine (uncoated) form, or modified with citrate and/or silica on their surface. As benchmark material, Aeroxide® P25 was used. We assessed cytotoxicity, genotoxicity and induction of morphological neoplastic transformation of NP by using a panel of in vitro assays in an established mammalian cell line of murine origin (Balb/3T3). Cell viability was evaluated by means of colony-forming efficiency assay (CFE). Genotoxicity was investigated by cytokinesis-block micronucleus cytome assay (CBMN cyt) and comet assay, and by the use of the restriction enzymes EndoIII and Fpg, oxidatively damaged DNA was detected; finally, the morphological neoplastic transformation of NP was assayed in vitro by cell transformation assay (CTA). Our results show that the surface remediation has not been effective in modifying cyto- and genotoxic properties of the nanomaterials tested; indeed, in the case of remediation of zirconia and titania with citrate, there is a tendency to emphasise the toxic effects. The use of a panel of assays, such as those we have employed, allowing the evaluation of multiple endpoints, including cell transformation, seems particularly advisable especially in the case of long-term exposure effects in the same cell type.


Asunto(s)
Transformación Celular Neoplásica/inducido químicamente , Daño del ADN , Nanopartículas del Metal/toxicidad , Pruebas de Mutagenicidad , Titanio/toxicidad , Circonio/toxicidad , Animales , Línea Celular , Supervivencia Celular , ADN/efectos de los fármacos , Nanopartículas del Metal/química , Ratones , Estrés Oxidativo , Titanio/farmacología , Circonio/farmacología
9.
Mutagenesis ; 28(3): 287-99, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23462852

RESUMEN

In nanotoxicology, the capacity of nanoparticles of the same composition but different shape to induce cytotoxicity and genotoxicity is largely unknown. A series of cytotoxic and genotoxic responses following in vitro exposure to differently shaped CuO nanoparticles (CuO NPs, mass concentrations from 0.1 to 100 µg/ml) were assessed in murine macrophages RAW 264.7 and in peripheral whole blood from healthy volunteers. Cytotoxicity, cytostasis and genotoxicity were evaluated by the colorimetric assay of formazan reduction [3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT)] and by the cytokinesis-block micronucleus cytome (CBMN Cyt) assay. The comet assay was applied for detecting DNA strand breaks and information on oxidative damage to DNA (oxidised purines and pyrimidines). The MTT assay revealed a decrease in cell viability in RAW 264.7 cells and peripheral blood lymphocytes (PBL) with significant dose-effect relationships for the different CuO NP shapes. The comet assay revealed a dose-dependent increase in primary DNA damage, and a significant increase in oxidative damage to DNA was also detectable, as well as increased frequency of micronuclei in binucleated cells, often in a dose-related manner. Proliferative activity, cytotoxicity and apoptotic markers showed a significant trend in the two cell types. Finally, we have differentiated clastogenic events from aneugenic events by fluorescence in situ hybridisation with human and murine pancentromeric probes, revealing for the first time characteristic aneugenic responses related to the shape of CuO NPs and cell type. Independently of size and shape, all CuO NPs revealed a clear-cut cytotoxic and genotoxic potential; this suggests that CuO NPs are good candidates for positive controls in nanotoxicology.


Asunto(s)
Cobre/toxicidad , Nanopartículas/toxicidad , Aneuploidia , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Aberraciones Cromosómicas/inducido químicamente , Cobre/química , Humanos , Concentración 50 Inhibidora , Leucocitos Mononucleares/efectos de los fármacos , Masculino , Ratones , Micronúcleos con Defecto Cromosómico/inducido químicamente , Pruebas de Micronúcleos , Mitosis/efectos de los fármacos , Nanopartículas/química , Nanopartículas/ultraestructura , Tamaño de la Partícula
10.
Sci Rep ; 13(1): 18550, 2023 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-37899458

RESUMEN

Neuronal ceroid lipofuscinosis 6 (CLN6) is a rare and fatal autosomal recessive disease primarily affecting the nervous system in children. It is caused by a pathogenic mutation in the CLN6 gene for which no therapy is available. Employing an untargeted metabolomics approach, we analyzed the metabolic changes in CLN6 subjects to see if this system could potentially yield biomarkers for diagnosis and monitoring disease progression. Neuronal-like cells were derived from human fibroblast lines from CLN6-affected subjects (n = 3) and controls (wild type, n = 3). These were used to assess the potential of a neuronal-like cell-based metabolomics approach to identify CLN6 distinctive and specific biomarkers. The most impacted metabolic profile is associated with sphingolipids, glycerophospholipids metabolism, and calcium signaling. Over 2700 spectral features were screened, and fifteen metabolites were identified that differed significantly between both groups, including the sphingolipids C16 GlcCer, C24 GlcCer, C24:1 GlcCer and glycerophospholipids PG 40:6 and PG 40:7. Of note, these fifteen metabolites were downregulated in the CLN6 disease group. This study is the first to analyze the metabolome of neuronal-like cells with a pathogenic mutation in the CLN6 gene and to provide insights into their metabolomic alterations. This could allow for the development of novel biomarkers for monitoring CLN6 disease.


Asunto(s)
Proteínas de la Membrana , Lipofuscinosis Ceroideas Neuronales , Niño , Humanos , Proteínas de la Membrana/metabolismo , Lipofuscinosis Ceroideas Neuronales/metabolismo , Metabolismo de los Lípidos , Metabolómica , Glicerofosfolípidos , Esfingolípidos , Biomarcadores/metabolismo
11.
Environ Toxicol Pharmacol ; 98: 104079, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36796551

RESUMEN

Building demolition following domestic fires or abrasive processing after thermal recycling can release particles harmful for the environment and human health. To mimic such situations, particles release during dry-cutting of construction materials was investigated. A reinforcement material consisting of carbon rods (CR), carbon concrete composite (C³) and thermally treated C³ (ttC³) were physicochemically and toxicologically analyzed in monocultured lung epithelial cells, and co-cultured lung epithelial cells and fibroblasts at the air-liquid interface. C³ particles reduced their diameter to WHO fibre dimensions during thermal treatment. Caused by physical properties or by polycyclic aromatic hydrocarbons and bisphenol A found in the materials, especially the released particles of CR and ttC³ induced an acute inflammatory response and (secondary) DNA damage. Transcriptome analysis indicated that CR and ttC³ particles carried out their toxicity via different mechanisms. While ttC³ affected pro-fibrotic pathways, CR was mostly involved in DNA damage response and in pro-oncogenic signaling.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Humanos , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Tamaño de la Partícula , Pulmón , Células Epiteliales , Hidrocarburos Policíclicos Aromáticos/análisis , Inflamación/metabolismo , Daño del ADN , Materiales de Construcción , Fibroblastos
12.
ACS Biomater Sci Eng ; 9(1): 303-317, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36490313

RESUMEN

Superparamagnetic iron oxide nanoparticles (SPIONs) have gained increasing interest in nanomedicine, but most of those that have entered the clinical trials have been withdrawn due to toxicity concerns. Therefore, there is an urgent need to design low-risk and biocompatible SPION formulations. In this work, we present an original safe-by-design nanoplatform made of silica nanoparticles loaded with SPIONs and decorated with polydopamine (SPIONs@SiO2-PDA) and the study of its biocompatibility performance by an ad hoc thorough in vitro to in vivo nanotoxicological methodology. The results indicate that the SPIONs@SiO2-PDA have excellent colloidal stability in serum-supplemented culture media, even after long-term (24 h) exposure, showing no cytotoxic or genotoxic effects in vitro and ex vivo. Physiological responses, evaluated in vivo using Caenorhabditis elegans as the animal model, showed no impact on fertility and embryonic viability, induction of an oxidative stress response, and a mild impact on animal locomotion. These tests indicate that the synergistic combination of the silica matrix and PDA coating we developed effectively protects the SPIONs, providing enhanced colloidal stability and excellent biocompatibility.


Asunto(s)
Nanopartículas de Magnetita , Animales , Nanopartículas de Magnetita/toxicidad , Dióxido de Silicio/farmacología , Nanopartículas Magnéticas de Óxido de Hierro , Indoles/farmacología
13.
Artículo en Inglés | MEDLINE | ID: mdl-35151426

RESUMEN

Adverse health effects driven by airborne particulate matter (PM) are mainly associated with reactive oxygen species formation, pro-inflammatory effects, and genome instability. Therefore, a better understanding of the underlying mechanisms is needed to evaluate health risks caused by exposure to PM. The aim of this study was to compare the genotoxic effects of two oxidizing agents (menadione and 3-chloro-1,2-propanediol) with three different reference PM (fine dust ERM-CZ100, urban dust SRM1649, and diesel PM SRM2975) on monocytic THP-1 and alveolar epithelial A549 cells. We assessed DNA oxidation by measuring the oxidized derivative 8-hydroxy-2'-deoxyguanosine (8-OHdG) following short and long exposure times to evaluate the persistency of oxidative DNA damage. Cytokinesis-block micronucleus cytome assay was performed to assess chromosomal instability, cytostasis, and cytotoxicity. Particles were characterized by inductively coupled plasma mass spectrometry in terms of selected elemental content, the release of ions in cell medium and the cellular uptake of metals. PM deposition and cellular dose were investigated by a spectrophotometric method on adherent A549 cells. The level of lipid peroxidation was evaluated via malondialdehyde concentration measurement. Despite differences in the tested concentrations, deposition efficiency, and lipid peroxidation levels, all reference PM samples caused oxidative DNA damage to a similar extent as the two oxidizers in terms of magnitude but with different oxidative DNA damage persistence. Diesel SRM2975 were more effective in inducing chromosomal instability with respect to fine and urban dust highlighting the role of polycyclic aromatic hydrocarbons derivatives on chromosomal instability. The persistence of 8-OHdG lesions strongly correlated with different types of chromosomal damage and revealed distinguishing sensitivity of cell types as well as specific features of particles versus oxidizing agent effects. In conclusion, this study revealed that an interplay between DNA oxidation persistence and chromosomal damage is driving particulate matter-induced genome instability.


Asunto(s)
Contaminantes Atmosféricos , Inestabilidad Cromosómica , Daño del ADN , Material Particulado , 8-Hidroxi-2'-Desoxicoguanosina/análisis , Células A549 , Contaminantes Atmosféricos/toxicidad , Polvo , Humanos , Material Particulado/toxicidad
14.
Toxics ; 10(12)2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36548563

RESUMEN

Anthropogenic activities and industrialization render continuous human exposure to semi-volatile organic compounds (SVOCs) inevitable. Occupational monitoring and safety implementations consider the inhalation exposure of SVOCs as critically relevant. Due to the inherent properties of SVOCs as gas/particle mixtures, risk assessment strategies should consider particle size-segregated SVOC association and the relevance of released gas phase fractions. We constructed an in vitro air-liquid interface (ALI) exposure system to study the distinct toxic effects of the gas and particle phases of the model SVOC dibutyl phthalate (DBP) in A549 human lung epithelial cells. Cytotoxicity was evaluated and genotoxic effects were measured by the alkaline and enzyme versions of the comet assay. Deposited doses were assessed by model calculations and chemical analysis using liquid chromatography tandem mass spectrometry. The novel ALI exposure system was successfully implemented and revealed the distinct genotoxic effects of the gas and particle phases of DBP. The empirical measurements of cellular deposition and the model calculations of the DBP particle phase were concordant.The model SVOC DBP showed that inferred oxidative DNA damage may be attributed to particle-related effects. While pure gas phase exposure may follow a distinct mechanism of genotoxicity, the contribution of the gas phase to total aerosol was comparably low.

15.
Orphanet J Rare Dis ; 17(1): 179, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35505348

RESUMEN

BACKGROUND: Ceroid lipofuscinoses neuronal 6 (CLN6) disease belongs to the neuronal ceroid lipofuscinoses (NCLs), complex and genetically heterogeneous disorders with wide geographical and phenotypic variation. The first clinical signs usually appear between 18 months and 8 years, but examples of later-onset have also been reported. Common manifestations include ataxia, seizures, vision impairment, and developmental regression. Because these are shared by other neurological diseases, identification of CLN6 genetic variants is imperative for early diagnosis. RESULTS: We present one of the largest cohorts to date of genetically diagnosed CLN6 patients screened at a single center. In total 97 subjects, originating from 20 countries were screened between 2010 and 2020. They comprised 86 late-infantile, eight juvenile, and three adult-onset cases (two patients with Kufs disease type A, and one with teenage progressive myoclonic epilepsy). The male to female ratio was 1.06: 1.00. The age at referral was between six months and 33 years. The time from disease onset to referral ranged from less than 1 month to 8.3 years. The clinical phenotype consisted of a combination of symptoms, as reported before. We characterized a total of 45 distinct variants defining 45 distinct genotypes. Twenty-four were novel variants, some with distinct geographic associations. Remarkably, c.257A > G (p.H86R) was present in five out of 23 unrelated Egyptian individuals but in no patients from other countries. The most common genotype was homozygosity for the c.794_796del in-frame deletion. It was present in about one-third of CLN6 patients (28 unrelated cases, and 2 familial cases), all with late-infantile onset. Variants with a high likelihood of causing loss of CLN6 function were found in 21% of cases and made up 33% of all distinct variants. Forty-four percent of variants were classified as pathogenic or likely pathogenic. CONCLUSIONS: Our study significantly expands the number of published clinical cases and the mutational spectrum of disease-associated CLN6 variants, especially for the Middle Eastern and North African regions. We confirm previous observations regarding the most prevalent symptoms and recommend including CLN6 in the genetic diagnosis of patients presenting with early-onset abnormalities of the nervous system, musculoskeletal system, and eye.


Asunto(s)
Epilepsias Mioclónicas Progresivas , Lipofuscinosis Ceroideas Neuronales , Adolescente , Femenino , Humanos , Masculino , Proteínas de la Membrana/genética , Mutación/genética , Lipofuscinosis Ceroideas Neuronales/genética
16.
Sci Total Environ ; 806(Pt 1): 150489, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34844316

RESUMEN

Solid fuel usage in residential heating and cooking is one of the largest sources of ambient and indoor air particulate matter, which causes adverse effects on the health of millions of peoples worldwide. Emissions from solid fuel combustion, such as biomass or coal, are detrimental to health, but toxicological responses are largely unknown. In the present study, we compared the toxicological responses regarding cytotoxicity, inflammation and genotoxicity of spruce (SPR) and brown coal briquette (BCB) combustion aerosols on human alveolar epithelial cells (A549) as well as a coculture of A549 and differentiated human monocytic cells (THP-1) into macrophages exposed at the air-liquid interface (ALI). We included both the high emissions from the first hour and moderate emissions from the third hour of the batch combustion experiment in one ALI system, whereas, in the second ALI system, we exposed the cells during the whole 4-hour combustion experiment, including all combustion phases. Physico-chemical properties of the combustion aerosol were analysed both online and offline. Both SPR and BCB combustion aerosols caused mild cytotoxic but notable genotoxic effects in co-cultured A549 cells after one-hour exposure. Inflammatory response analysis revealed BCB combustion aerosols to cause a mild increase in CXCL1 and CXCL8 levels, but in the case of SPR combustion aerosol, a decrease compared to control was observed.


Asunto(s)
Contaminantes Atmosféricos , Carbón Mineral , Aerosoles/toxicidad , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Daño del ADN , Humanos , Pulmón , Material Particulado/análisis , Material Particulado/toxicidad
17.
Environ Health Perspect ; 130(2): 27003, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35112925

RESUMEN

BACKGROUND: Secondary organic aerosols (SOAs) formed from anthropogenic or biogenic gaseous precursors in the atmosphere substantially contribute to the ambient fine particulate matter [PM ≤2.5µm in aerodynamic diameter (PM2.5)] burden, which has been associated with adverse human health effects. However, there is only limited evidence on their differential toxicological impact. OBJECTIVES: We aimed to discriminate toxicological effects of aerosols generated by atmospheric aging on combustion soot particles (SPs) of gaseous biogenic (ß-pinene) or anthropogenic (naphthalene) precursors in two different lung cell models exposed at the air-liquid interface (ALI). METHODS: Mono- or cocultures of lung epithelial cells (A549) and endothelial cells (EA.hy926) were exposed at the ALI for 4 h to different aerosol concentrations of a photochemically aged mixture of primary combustion SP and ß-pinene (SOAßPIN-SP) or naphthalene (SOANAP-SP). The internally mixed soot/SOA particles were comprehensively characterized in terms of their physical and chemical properties. We conducted toxicity tests to determine cytotoxicity, intracellular oxidative stress, primary and secondary genotoxicity, as well as inflammatory and angiogenic effects. RESULTS: We observed considerable toxicity-related outcomes in cells treated with either SOA type. Greater adverse effects were measured for SOANAP-SP compared with SOAßPIN-SP in both cell models, whereas the nano-sized soot cores alone showed only minor effects. At the functional level, we found that SOANAP-SP augmented the secretion of malondialdehyde and interleukin-8 and may have induced the activation of endothelial cells in the coculture system. This activation was confirmed by comet assay, suggesting secondary genotoxicity and greater angiogenic potential. Chemical characterization of PM revealed distinct qualitative differences in the composition of the two secondary aerosol types. DISCUSSION: In this study using A549 and EA.hy926 cells exposed at ALI, SOA compounds had greater toxicity than primary SPs. Photochemical aging of naphthalene was associated with the formation of more oxidized, more aromatic SOAs with a higher oxidative potential and toxicity compared with ß-pinene. Thus, we conclude that the influence of atmospheric chemistry on the chemical PM composition plays a crucial role for the adverse health outcome of emissions. https://doi.org/10.1289/EHP9413.


Asunto(s)
Contaminantes Atmosféricos , Hollín , Aerosoles/análisis , Anciano , Envejecimiento , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Células Endoteliales/química , Células Endoteliales/metabolismo , Humanos , Pulmón/metabolismo , Material Particulado/análisis
18.
Environ Int ; 166: 107366, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35763991

RESUMEN

The health effects of exposure to secondary organic aerosols (SOAs) are still limited. Here, we investigated and compared the toxicities of soot particles (SP) coated with ß-pinene SOA (SOAßPin-SP) and SP coated with naphthalene SOA (SOANap-SP) in a human bronchial epithelial cell line (BEAS-2B) residing at the air-liquid interface. SOAßPin-SP mostly contained oxygenated aliphatic compounds from ß-pinene photooxidation, whereas SOANap-SP contained a significant fraction of oxygenated aromatic products under similar conditions. Following exposure, genome-wide transcriptome responses showed an Nrf2 oxidative stress response, particularly for SOANap-SP. Other signaling pathways, such as redox signaling, inflammatory signaling, and the involvement of matrix metalloproteinase, were identified to have a stronger impact following exposure to SOANap-SP. SOANap-SP also induced a stronger genotoxicity response than that of SOAßPin-SP. This study elucidated the mechanisms that govern SOA toxicity and showed that, compared to SOAs derived from a typical biogenic precursor, SOAs from a typical anthropogenic precursor have higher toxicological potency, which was accompanied with the activation of varied cellular mechanisms, such as aryl hydrocarbon receptor. This can be attributed to the difference in chemical composition; specifically, the aromatic compounds in the naphthalene-derived SOA had higher cytotoxic potential than that of the ß-pinene-derived SOA.

19.
J Mol Recognit ; 24(4): 608-18, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21472812

RESUMEN

The Marek's disease virus (MDV) integration may induce a novel organization of chromatin architecture with a modified genetic expression. In our opinion it is worthwhile trying to relate cytogenetic stability to functional modifications. Recently, atomic force microscopy technique was applied to study the structure of chromosomes at a nanoscale level. This high resolution allows to investigate the different structure of chromatin in order to study cytogenetic stability and chromosome aberrations due to MDV insertion. In this paper data are presented indicating a duplication [78,WZ,dup(1p)(p22-p23)] and a deletion [78,WZ cht del(3)(q2.10)] of Chromosomes 1 and 3 relatively. Relationships between GTG (G-bands by Trypsin using Giemsa) bands and the topography of chromosomes are also discussed, naming them Topographic Banding. The architecture of chromosomes observed by AFM can be related to the data obtained with classic banding techniques thus overcoming the optical resolution limits. The presence of chromatin bridges between sister chromatids at most of the heterochromatic regions is also evidenced. Besides, we present different studies of the longitudinal and transversal symmetry of the hetero and euchromatic regions to clearly demonstrate a different underlying architecture of these regions. It is indeed evident that the heterochromatic bands are more symmetrical than euchromatic bands.


Asunto(s)
Citogenética/métodos , Herpesvirus Gallináceo 2/fisiología , Microscopía de Fuerza Atómica/métodos , Animales , Línea Celular , Pollos , Cromosomas/genética , Herpesvirus Gallináceo 2/genética
20.
Mutat Res ; 722(1): 20-31, 2011 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-21382506

RESUMEN

Production of nanotechnology-based materials is increasing worldwide: it is essential to evaluate their potential toxicity. Among these nanomaterials, carbon nanotubes (CNTs) have tremendous potential in many areas of research and applications. We have investigated the cyto- and genotoxic effects of single and multi-walled CNTs (SWCNTs, MWCNTs) and carbon black (CB) on the mouse macrophage cell line RAW 264.7. Specifically we have investigated inflammatory response, release of tumor necrosis factor-α (TNF-α), intracellular reactive oxygen species (ROS) production, cell death (both necrosis and apoptosis), chromosomal aberrations and cellular ultrastructural alteration caused by CB, MWCNTs and SWCNTs. Our data confirm that both CNTs and CB are cyto and geno-toxic to RAW 264.7 mouse macrophages. CNTs exposure induced ROS release, necrosis and chromosomal aberrations but did not cause an inflammatory response. In addition CNTs induce ultrastructural damage and apoptosis. CNTs penetrate the cell membrane and individual MWCNTs are seen associated with the nuclear envelope.


Asunto(s)
Macrófagos/efectos de los fármacos , Mutágenos/toxicidad , Nanotubos de Carbono/toxicidad , Animales , Muerte Celular , Línea Celular , Forma de la Célula/efectos de los fármacos , Aberraciones Cromosómicas , Daño del ADN , Inflamación/etiología , Macrófagos/patología , Macrófagos/ultraestructura , Ratones , Microscopía Electrónica , Necrosis/etiología , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA