Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Braz J Med Biol Res ; 53(10): e9930, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32813853

RESUMEN

In knee replacements, vitamin E-doped ultra-high molecular weight polyethylene (UHMWPE) shows a better wear behavior than standard UHMWPE. Therefore, different sets of polyethylene (PE) acetabular cups, i.e. standard UHMWPE and cross-linked polyethylene irradiated with 50 kGy and 75 kGy, were compared, at a molecular level, with vitamin E-doped UHMWPE to evaluate their wear performance after being tested on a hip joint simulator for five million cycles. Unworn control and worn acetabular cups were analyzed by micro-Raman spectroscopy to gain insight into the effects of wear on the microstructure and phase composition of PE. Macroscopic wear was evaluated through mass loss measurements. The data showed that the samples could be divided into two groups: 1) standard and vitamin E-doped cups (mass loss of about 100 mg) and 2) the cross-linked cups (mass loss of about 30-40 mg). Micro-Raman spectroscopy disclosed different wear mechanisms in the four sets of acetabular cups, which were related to surface topography data. The vitamin E-doped samples did not show a better wear behavior than the cross-linked ones in terms of either mass loss or morphology changes. However, they showed lower variation at the morphological level (lower changes in phase composition) than the UHMWPE cups, thus confirming a certain protecting role of vitamin E against microstructural changes induced by wear testing.


Asunto(s)
Articulación de la Cadera , Prótesis de Cadera , Ensayo de Materiales , Polietilenos , Vitamina E
2.
Int J Artif Organs ; 29(7): 719-25, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16874679

RESUMEN

Porous poly(epsilon-caprolactone) (PCL) is used as long-term bioresorbable scaffold for bone tissue engineering. The bone regeneration process can be enhanced by addition of carbonated apatites (AP). This study was aimed at evaluating the influence of the PCL/AP ratio on the in vitro degradation and bioactivity of PCL-AP composites. To this purpose, PCL-AP samples were synthesised with the following PCL/AP weight/weight ratios: 50/50, 60/40 and 75/25. Vibrational IR and Raman spectroscopies coupled to thermogravimetry (TG) and differential scanning calorimetry (DSC) were used to investigate the in vitro degradation mechanism in different media: 0.01 M NaOH solution (pH=12), saline phosphate buffer at pH 7.5 (SPB), esterase in SPB and simulated body fluid (SBF) at pH 7.5. The latter medium was used to evaluate the bioactivity of the composites. A control PCL sample was analysed before the addition of the AP component. As regards the untreated samples, the method of synthesis utilised for preparing the composite was found to enhance the crystallinity degree. The AP component revealed to be constituted of a B-type carbonated hydroxyapatite with a 3% carbonate content. After 28 days of treatment, the samples showed different degradation patterns and extents depending on the degradation medium, the starting PCL crystallinity and composite composition. Weight measurements, Raman and TG analyses revealed deposition of an apatitic phase on all the composites immersed in SBF. Therefore, all the samples displayed a good bioactivity; the sample which showed the most pronounced apatitic deposition was 50/50, i.e. that containing the highest amount of AP.


Asunto(s)
Apatitas/metabolismo , Huesos/metabolismo , Caproatos/metabolismo , Lactonas/metabolismo , Ingeniería de Tejidos , Cristalización , Matriz Extracelular/metabolismo , Humanos , Análisis Espectral , Espectrometría Raman , Vibración
3.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;53(10): e9930, 2020. graf
Artículo en Inglés | LILACS, Coleciona SUS (Brasil) | ID: biblio-1132477

RESUMEN

In knee replacements, vitamin E-doped ultra-high molecular weight polyethylene (UHMWPE) shows a better wear behavior than standard UHMWPE. Therefore, different sets of polyethylene (PE) acetabular cups, i.e. standard UHMWPE and cross-linked polyethylene irradiated with 50 kGy and 75 kGy, were compared, at a molecular level, with vitamin E-doped UHMWPE to evaluate their wear performance after being tested on a hip joint simulator for five million cycles. Unworn control and worn acetabular cups were analyzed by micro-Raman spectroscopy to gain insight into the effects of wear on the microstructure and phase composition of PE. Macroscopic wear was evaluated through mass loss measurements. The data showed that the samples could be divided into two groups: 1) standard and vitamin E-doped cups (mass loss of about 100 mg) and 2) the cross-linked cups (mass loss of about 30-40 mg). Micro-Raman spectroscopy disclosed different wear mechanisms in the four sets of acetabular cups, which were related to surface topography data. The vitamin E-doped samples did not show a better wear behavior than the cross-linked ones in terms of either mass loss or morphology changes. However, they showed lower variation at the morphological level (lower changes in phase composition) than the UHMWPE cups, thus confirming a certain protecting role of vitamin E against microstructural changes induced by wear testing.


Asunto(s)
Articulación de la Cadera , Prótesis de Cadera , Polietilenos , Vitamina E , Ensayo de Materiales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA