Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
EMBO J ; 40(20): e107158, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34515347

RESUMEN

Nucleolin is a multifunctional RNA Binding Protein (RBP) with diverse subcellular localizations, including the nucleolus in all eukaryotic cells, the plasma membrane in tumor cells, and the axon in neurons. Here we show that the glycine arginine rich (GAR) domain of nucleolin drives subcellular localization via protein-protein interactions with a kinesin light chain. In addition, GAR sequences mediate plasma membrane interactions of nucleolin. Both these modalities are in addition to the already reported involvement of the GAR domain in liquid-liquid phase separation in the nucleolus. Nucleolin transport to axons requires the GAR domain, and heterozygous GAR deletion mice reveal reduced axonal localization of nucleolin cargo mRNAs and enhanced sensory neuron growth. Thus, the GAR domain governs axonal transport of a growth controlling RNA-RBP complex in neurons, and is a versatile localization determinant for different subcellular compartments. Localization determination by GAR domains may explain why GAR mutants in diverse RBPs are associated with neurodegenerative disease.


Asunto(s)
Nucléolo Celular/metabolismo , Ganglios Espinales/metabolismo , Cinesinas/metabolismo , Neuronas/metabolismo , Fosfoproteínas/química , Proteínas de Unión al ARN/química , Nervio Ciático/metabolismo , Secuencia de Aminoácidos , Animales , Transporte Axonal/genética , Línea Celular Tumoral , Nucléolo Celular/ultraestructura , Ganglios Espinales/citología , Expresión Génica , Células HEK293 , Células HeLa , Humanos , Cinesinas/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Mutación , Neuronas/citología , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Cultivo Primario de Células , Dominios Proteicos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Nervio Ciático/citología , Nucleolina
2.
J Cell Sci ; 136(5)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36218033

RESUMEN

Size homeostasis is a fundamental process in biology and is particularly important for large cells such as neurons. We previously proposed a motor-dependent length-sensing mechanism wherein reductions in microtubule motor levels would be expected to accelerate neuronal growth, and validated this prediction in dynein heavy chain 1 Loa mutant (Dync1h1Loa) sensory neurons. Here, we describe a new mouse model with a conditional deletion allele of exons 24 and 25 in Dync1h1. Homozygous Islet1-Cre-mediated deletion of Dync1h1 (Isl1-Dync1h1-/-), which deletes protein from the motor and sensory neurons, is embryonic lethal, but heterozygous animals (Isl1-Dync1h1+/-) survive to adulthood with ∼50% dynein expression in targeted cells. Isl1-Dync1h1+/- sensory neurons reveal accelerated growth, as previously reported in Dync1h1Loa neurons. Moreover, Isl1-Dync1h1+/- mice show mild impairments in gait, proprioception and tactile sensation, similar to what is seen in Dync1h1Loa mice, confirming that specific aspects of the Loa phenotype are due to reduced dynein levels. Isl1-Dync1h1+/- mice also show delayed recovery from peripheral nerve injury, likely due to reduced injury signal delivery from axonal lesion sites. Thus, conditional deletion of Dync1h1 exons 24 and 25 enables targeted studies of the role of dynein in neuronal growth.


Asunto(s)
Dineínas Citoplasmáticas , Dineínas , Ratones , Animales , Dineínas/genética , Dineínas/metabolismo , Dineínas Citoplasmáticas/genética , Dineínas Citoplasmáticas/metabolismo , Alelos , Mutación , Células Receptoras Sensoriales/metabolismo
3.
Neurobiol Dis ; 140: 104816, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32088381

RESUMEN

The cytoplasmic dynein motor complex transports essential signals and organelles from the cell periphery to the perinuclear region, hence is critical for the survival and function of highly polarized cells such as neurons. Dynein Light Chain Roadblock-Type 1 (DYNLRB1) is thought to be an accessory subunit required for specific cargos, but here we show that it is essential for general dynein-mediated transport and sensory neuron survival. Homozygous Dynlrb1 null mice are not viable and die during early embryonic development. Furthermore, heterozygous or adult knockdown animals display reduced neuronal growth, and selective depletion of Dynlrb1 in proprioceptive neurons compromises their survival. Conditional depletion of Dynlrb1 in sensory neurons causes deficits in several signaling pathways, including ß-catenin subcellular localization, and a severe impairment in the axonal transport of both lysosomes and retrograde signaling endosomes. Hence, DYNLRB1 is an essential component of the dynein complex, and given dynein's critical functions in neuronal physiology, DYNLRB1 could have a prominent role in the etiology of human neurodegenerative diseases.


Asunto(s)
Transporte Axonal/fisiología , Dineínas/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales , Proteínas Portadoras/metabolismo , Supervivencia Celular , Células Cultivadas , Dineínas/genética , Lisosomas/metabolismo , Masculino , Ratones , Neurogénesis , Orgánulos/metabolismo , Transfección
4.
Sci Adv ; 9(30): eadi0286, 2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37506203

RESUMEN

Polypyrimidine tract binding protein 1 (PTBP1) is thought to be expressed only at embryonic stages in central neurons. Its down-regulation triggers neuronal differentiation in precursor and non-neuronal cells, an approach recently tested for generation of neurons de novo for amelioration of neurodegenerative disorders. Moreover, PTBP1 is replaced by its paralog PTBP2 in mature central neurons. Unexpectedly, we found that both proteins are coexpressed in adult sensory and motor neurons, with PTBP2 restricted mainly to the nucleus, while PTBP1 also shows axonal localization. Levels of axonal PTBP1 increased markedly after peripheral nerve injury, and it associates in axons with mRNAs involved in injury responses and nerve regeneration, including importin ß1 (KPNB1) and RHOA. Perturbation of PTBP1 affects local translation in axons, nociceptor neuron regeneration and both thermal and mechanical sensation. Thus, PTBP1 has functional roles in adult axons. Hence, caution is required before considering targeting of PTBP1 for therapeutic purposes.


Asunto(s)
Axones , Regeneración Nerviosa , Neuronas , Traumatismos de los Nervios Periféricos , Adulto , Humanos , Axones/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Interneuronas/metabolismo , Regeneración Nerviosa/genética , Neuronas/metabolismo , Traumatismos de los Nervios Periféricos/genética , Traumatismos de los Nervios Periféricos/metabolismo
5.
Science ; 369(6505): 842-846, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32792398

RESUMEN

How is neuropathic pain regulated in peripheral sensory neurons? Importins are key regulators of nucleocytoplasmic transport. In this study, we found that importin α3 (also known as karyopherin subunit alpha 4) can control pain responsiveness in peripheral sensory neurons in mice. Importin α3 knockout or sensory neuron-specific knockdown in mice reduced responsiveness to diverse noxious stimuli and increased tolerance to neuropathic pain. Importin α3-bound c-Fos and importin α3-deficient neurons were impaired in c-Fos nuclear import. Knockdown or dominant-negative inhibition of c-Fos or c-Jun in sensory neurons reduced neuropathic pain. In silico screens identified drugs that mimic importin α3 deficiency. These drugs attenuated neuropathic pain and reduced c-Fos nuclear localization. Thus, perturbing c-Fos nuclear import by importin α3 in peripheral neurons can promote analgesia.


Asunto(s)
Dolor Crónico/fisiopatología , Neuralgia/fisiopatología , Células Receptoras Sensoriales/fisiología , alfa Carioferinas/fisiología , Transporte Activo de Núcleo Celular , Animales , Benzofenonas/farmacología , Dolor Crónico/genética , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Isoxazoles/farmacología , Ratones , Ratones Endogámicos C57BL , Neuralgia/genética , Proteínas Proto-Oncogénicas c-fos/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-fos/metabolismo , Factor de Transcripción AP-1/metabolismo , alfa Carioferinas/genética
6.
Science ; 359(6382): 1416-1421, 2018 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-29567716

RESUMEN

How is protein synthesis initiated locally in neurons? We found that mTOR (mechanistic target of rapamycin) was activated and then up-regulated in injured axons, owing to local translation of mTOR messenger RNA (mRNA). This mRNA was transported into axons by the cell size-regulating RNA-binding protein nucleolin. Furthermore, mTOR controlled local translation in injured axons. This included regulation of its own translation and that of retrograde injury signaling molecules such as importin ß1 and STAT3 (signal transducer and activator of transcription 3). Deletion of the mTOR 3' untranslated region (3'UTR) in mice reduced mTOR in axons and decreased local translation after nerve injury. Both pharmacological inhibition of mTOR in axons and deletion of the mTOR 3'UTR decreased proprioceptive neuronal survival after nerve injury. Thus, mRNA localization enables spatiotemporal control of mTOR pathways regulating local translation and long-range intracellular signaling.


Asunto(s)
Axones/metabolismo , Ganglios Espinales/lesiones , Biosíntesis de Proteínas , Nervio Ciático/lesiones , Serina-Treonina Quinasas TOR/biosíntesis , Regiones no Traducidas 3' , Animales , Tamaño de la Célula , Ratones , Ratones Endogámicos , Fosfoproteínas/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Ratas , Ratas Endogámicas BB , Ratas Sprague-Dawley , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Nucleolina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA