Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Carcinog ; 63(4): 589-600, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38197430

RESUMEN

Prostate cancer (PCa) is the second most common cancer type among American men and it is estimated that in 2023, 34,700 men will die from PCa. Since it can take a considerable amount of time for the disease to progress to clinically evident cancer, there is ample opportunity for effective chemopreventive strategies to be applied for the successful management of PCa progression. In the current study, we have developed a two-tiered metabolomics-based screen to identify synergistic combinations of phytochemicals for PCa chemoprevention. This involves an initial screen for ATP depletion in PCa cells followed by a targeted screen for blocking glutamine uptake in the same cells. One of the phytochemical combinations (enoxolone [ENO] + silibinin [SIL]), identified via this screen, was examined for effects on PCa cell survival, oncogenic signaling and tumor growth in vivo. This combination was found to synergistically reduce cell survival, colony formation and cell cycle progression of PCa cell lines to a greater extent than either agent alone. The combination of ENO and SIL also synergistically reduced tumor growth when administered ad libitum through the diet in a HMVP2 allograft PCa tumor model. Treatment with the combination also significantly reduced STAT3 and mTORC1 signaling pathways in mouse and human PCa cells while significantly reducing levels of critical cell cycle regulatory proteins, contributing to the synergistic inhibition of tumor growth observed. Collectively, the current results demonstrate a novel approach to identifying synergistic combinations of phytochemicals for chemoprevention of PCa and possibly other cancers.


Asunto(s)
Ácido Glicirretínico , Neoplasias Primarias Secundarias , Neoplasias de la Próstata , Masculino , Humanos , Animales , Ratones , Detección Precoz del Cáncer , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/prevención & control , Proteínas de Ciclo Celular , Línea Celular , Supervivencia Celular , Línea Celular Tumoral
2.
J Urol ; 211(4): 552-562, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38299570

RESUMEN

PURPOSE: Excess body and visceral fat increase the risk of death from prostate cancer (PCa). This phase II study aimed to test whether weight reduction by > 5% total body weight counteracts obesity-driven PCa biomarkers. MATERIALS AND METHODS: Forty men scheduled for prostatectomy were randomized into intervention (n = 20) or control (n = 20) arms. Intervention participants followed a weight management program for 4 to 16 weeks before and 6 months after surgery. Control participants received standardized educational materials. All participants attended visits at baseline, 1 week before surgery, and 6 months after surgery. Circulating immune cells, cytokines, and chemokines were evaluated. Weight loss, body composition/distribution, quality of life, and nutrition literacy were assessed. Prostate tissue samples obtained from biopsy and surgery were analyzed. RESULTS: From baseline to surgery (mean = 5 weeks), the intervention group achieved 5.5% of weight loss (95% CI, 4%-7%). Compared to the control, the intervention also reduced insulin, total cholesterol, LDL cholesterol, leptin, leptin:adiponectin ratio, and visceral adipose tissue. The intervention group had reduced c-peptide, plasminogen-activator-inhibitor-1, and T cell count from baseline to surgery. Myeloid-derived suppressor cells were not statistically different by group. Intervention group anthropometrics improved, including visceral and overall fat loss. No prostate tissue markers changed significantly. Quality of life measures of general and emotional health improved in the intervention group. The intervention group maintained or kept losing to a net loss of 11% initial body weight (95% CI, 8%-14%) at the study end. CONCLUSIONS: Our study demonstrated improvements in body composition, PCa biomarkers, and quality of life with a weight management intervention.


Asunto(s)
Leptina , Neoplasias de la Próstata , Masculino , Humanos , Próstata , Calidad de Vida , Tejido Adiposo , Obesidad/complicaciones , Obesidad/terapia , Biomarcadores , Peso Corporal , Neoplasias de la Próstata/terapia , Pérdida de Peso
3.
Cancer Metastasis Rev ; 41(3): 649-671, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35927363

RESUMEN

Obesity represents an important risk factor for prostate cancer, driving more aggressive disease, chemoresistance, and increased mortality. White adipose tissue (WAT) overgrowth in obesity is central to the mechanisms that lead to these clinical observations. Adipose stromal cells (ASCs), the progenitors to mature adipocytes and other cell types in WAT, play a vital role in driving PCa aggressiveness. ASCs produce numerous factors, especially chemokines, including the chemokine CXCL12, which is involved in driving EMT and chemoresistance in PCa. A greater understanding of the impact of WAT in obesity-induced progression of PCa and the underlying mechanisms has begun to provide opportunities for developing interventional strategies for preventing or offsetting these critical events. These include weight loss regimens, therapeutic targeting of ASCs, use of calorie restriction mimetic compounds, and combinations of compounds as well as specific receptor targeting strategies.


Asunto(s)
Tejido Adiposo Blanco , Neoplasias de la Próstata , Tejido Adiposo/metabolismo , Tejido Adiposo Blanco/metabolismo , Quimiocina CXCL12 , Humanos , Masculino , Obesidad/metabolismo , Neoplasias de la Próstata/metabolismo
4.
Mol Carcinog ; 62(1): 62-76, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36373194

RESUMEN

Cutaneous squamous cell carcinoma (cSCC) represents an important clinical problem requiring novel approaches for both prevention and treatment. The transcription factor, Twist-related protein 1 (Twist1), has been identified as having a key mechanistic role in the development and progression of cSCC. Studies in relevant mouse models of cSCC have shown that Twist1 regulates epithelial-mesenchymal transition (EMT) and stemness driving progression and metastasis of cSCC. In addition, further research has shown that Twist1 regulates the balance between keratinocyte proliferation and differentiation and therefore impacts earlier stages of cSCC development. Through use of keratinocyte specific Twist1 knockout models, a role for this gene in keratinocyte stem cell homeostasis has been revealed. As a transcription factor, Twist1 regulates a large number of genes both in a positive, as well as a negative manner across several interdependent pathways. Studies in keratinocyte specific knockout models have shown that Twist1 upregulates the expression of genes involved in proliferation, stemness, and EMT while downregulating the expression of genes associated with differentiation. Furthermore, a number of compounds, including naturally occurring compounds, have been identified that target Twist1 and can block its effects in cancer cells and in keratinocytes in vivo. Collectively, the current understanding of Twist1 function in cSCC development and progression suggests that it represents a potential target for prevention and treatment of cSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Cutáneas , Proteína 1 Relacionada con Twist , Animales , Ratones , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/prevención & control , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/prevención & control , Neoplasias Cutáneas/patología , Proteína 1 Relacionada con Twist/genética , Proteína 1 Relacionada con Twist/metabolismo
5.
Mol Carcinog ; 62(10): 1531-1545, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37378415

RESUMEN

Many cancers, including melanoma, have a higher requirement for l-methionine in comparison with noncancerous cells. In this study, we show that administration of an engineered human methionine-γ-lyase (hMGL) significantly reduced the survival of both human and mouse melanoma cells in vitro. A multiomics approach was utilized to identify global changes in gene expression and in metabolite levels with hMGL treatment in melanoma cells. There was considerable overlap in the perturbed pathways identified in the two data sets. Common pathways were flagged for further investigation to understand their mechanistic importance. In this regard, hMGL treatment induced S and G2 phase cell cycle arrest, decreased nucleotide levels, and increased DNA double-strand breaks suggesting an important role for replication stress in the mechanism of hMGL effects on melanoma cells. Further, hMGL treatment resulted in increased cellular reactive oxygen species levels and increased apoptosis as well as uncharged transfer RNA pathway upregulation. Finally, treatment with hMGL significantly inhibited the growth of both mouse and human melanoma cells in orthotopic tumor models in vivo. Overall, the results of this study provide a strong rationale for further mechanistic evaluation and clinical development of hMGL for the treatment of melanoma skin cancer and other cancers.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Animales , Ratones , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular , Apoptosis , Línea Celular Tumoral
6.
Mol Ther ; 30(1): 485-500, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34450249

RESUMEN

Serine/threonine kinase 3 (STK3) is an essential member of the highly conserved Hippo tumor suppressor pathway that regulates Yes-associated protein 1 (YAP1) and TAZ. STK3 and its paralog STK4 initiate a phosphorylation cascade that regulates YAP1/TAZ inhibition and degradation, which is important for regulated cell growth and organ size. Deregulation of this pathway leads to hyperactivation of YAP1 in various cancers. Counter to the canonical tumor suppression role of STK3, we report that in the context of prostate cancer (PC), STK3 has a pro-tumorigenic role. Our investigation started with the observation that STK3, but not STK4, is frequently amplified in PC. Additionally, high STK3 expression is associated with decreased overall survival and positively correlates with androgen receptor (AR) activity in metastatic castrate-resistant PC. XMU-MP-1, an STK3/4 inhibitor, slowed cell proliferation, spheroid growth, and Matrigel invasion in multiple models. Genetic depletion of STK3 decreased proliferation in several PC cell lines. In a syngeneic allograft model, STK3 loss slowed tumor growth kinetics in vivo, and biochemical analysis suggests a mitotic growth arrest phenotype. To further probe the role of STK3 in PC, we identified and validated a new set of selective STK3 inhibitors, with enhanced kinase selectivity relative to XMU-MP-1, that inhibited tumor spheroid growth and invasion. Consistent with the canonical role, inhibition of STK3 induced cardiomyocyte growth and had chemoprotective effects. Our results indicate that STK3 has a non-canonical role in PC progression and that inhibition of STK3 may have a therapeutic potential for PC that merits further investigation.


Asunto(s)
Neoplasias de la Próstata , Proteínas Serina-Treonina Quinasas , Línea Celular Tumoral , Humanos , Péptidos y Proteínas de Señalización Intracelular , Masculino , Neoplasias de la Próstata/genética , Proteínas Serina-Treonina Quinasas/genética , Serina/farmacología , Serina-Treonina Quinasa 3 , Transducción de Señal
7.
Proc Natl Acad Sci U S A ; 117(23): 13000-13011, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32434918

RESUMEN

Extensive studies in prostate cancer and other malignancies have revealed that l-methionine (l-Met) and its metabolites play a critical role in tumorigenesis. Preclinical and clinical studies have demonstrated that systemic restriction of serum l-Met, either via partial dietary restriction or with bacterial l-Met-degrading enzymes exerts potent antitumor effects. However, administration of bacterial l-Met-degrading enzymes has not proven practical for human therapy because of problems with immunogenicity. As the human genome does not encode l-Met-degrading enzymes, we engineered the human cystathionine-γ-lyase (hMGL-4.0) to catalyze the selective degradation of l-Met. At therapeutically relevant dosing, hMGL-4.0 reduces serum l-Met levels to >75% for >72 h and significantly inhibits the growth of multiple prostate cancer allografts/xenografts without weight loss or toxicity. We demonstrate that in vitro, hMGL-4.0 causes tumor cell death, associated with increased reactive oxygen species, S-adenosyl-methionine depletion, global hypomethylation, induction of autophagy, and robust poly(ADP-ribose) polymerase (PARP) cleavage indicative of DNA damage and apoptosis.


Asunto(s)
Cistationina gamma-Liasa/farmacología , Metionina/antagonistas & inhibidores , Mutagénesis Sitio-Dirigida , Neoplasias de la Próstata/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Cistationina gamma-Liasa/genética , Cistationina gamma-Liasa/aislamiento & purificación , Cistationina gamma-Liasa/uso terapéutico , Daño del ADN/efectos de los fármacos , Pruebas de Enzimas , Humanos , Masculino , Metionina/sangre , Metionina/metabolismo , Ratones , Poli(ADP-Ribosa) Polimerasas/metabolismo , Neoplasias de la Próstata/sangre , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/uso terapéutico , Pruebas de Toxicidad Aguda , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Mol Carcinog ; 61(2): 127-152, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34534385

RESUMEN

Cancer cells undergo metabolic reprogramming to support increased demands in bioenergetics and biosynthesis and to maintain reactive oxygen species at optimum levels. As metabolic alterations are broadly observed across many cancer types, metabolic reprogramming is considered a hallmark of cancer. A metabolic alteration commonly seen in cancer cells is an increased demand for certain amino acids. Amino acids are involved in a wide range of cellular functions, including proliferation, redox balance, bioenergetic and biosynthesis support, and homeostatic functions. Thus, targeting amino acid dependency in cancer is an attractive strategy for a number of cancers. In particular, pharmacologically mediated amino acid depletion has been evaluated as a cancer treatment option for several cancers. Amino acids that have been investigated for the feasibility of drug-induced depletion in preclinical and clinical studies for cancer treatment include arginine, asparagine, cysteine, glutamine, lysine, and methionine. In this review, we will summarize the status of current research on pharmacologically mediated amino acid depletion as a strategy for cancer treatment and potential chemotherapeutic combinations that synergize with amino acid depletion to further inhibit tumor growth and progression.


Asunto(s)
Aminoácidos , Neoplasias , Aminoácidos/metabolismo , Arginina/metabolismo , Glutamina/metabolismo , Humanos , Neoplasias/tratamiento farmacológico , Oxidación-Reducción
9.
Mol Carcinog ; 61(3): 334-345, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34818445

RESUMEN

Current advancements in prostate cancer (PC) therapies have been successful in slowing PC progression and increasing life expectancy; however, there is still no curative treatment for advanced metastatic castration resistant PC (mCRPC). Most treatment options target the androgen receptor, to which many PCs eventually develop resistance. Thus, there is a dire need to identify and validate new molecular targets for treating PC. We found NUAK family kinase 2 (NUAK2) expression is elevated in PC and mCRPC versus normal tissue, and expression correlates with an increased risk of metastasis. Given this observation and because NUAK2, as a kinase, is actionable, we evaluated the potential of NUAK2 as a molecular target for PC. NUAK2 is a stress response kinase that also plays a role in activation of the YAP cotranscriptional oncogene. Combining pharmacological and genetic methods for modulating NUAK2, we found that targeting NUAK2 in vitro leads to reduction in proliferation, three-dimensional tumor spheroid growth, and matrigel invasion of PC cells. Differential gene expression analysis of PC cells treated NUAK2 small molecule inhibitor HTH-02-006 demonstrated that NUAK2 inhibition results in downregulation of E2F, EMT, and MYC hallmark gene sets after NUAK2 inhibition. In a syngeneic allograft model and in radical prostatectomy patient derived explants, NUAK2 inhibition slowed tumor growth and proliferation rates. Mechanistically, HTH-02-006 treatment led to inactivation of YAP and the downregulation of NUAK2 and MYC protein levels. Our results suggest that NUAK2 represents a novel actionable molecular target for PC that warrants further exploration.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Proteínas Serina-Treonina Quinasas
10.
Mol Ther ; 29(2): 775-787, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33091613

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) represents one of the deadliest forms of cancer with very few available therapeutic options. We previously reported that an engineered human enzyme, cyst(e)inase, which degrades L-cysteine (L-Cys) and cystine, inhibits growth of multiple cancer cells, including PDAC both in vitro and in vivo. Here, we show that cyst(e)inase treatment leads to increased clustered oxidative DNA damage, DNA single-strand breaks, apurinic/apyrimidinic sites, and DNA double-strand breaks (DSBs) in PDAC cells sensitive to intracellular depletion of L-Cys that is associated with reduced survival. BRCA2-deficient PDAC cells exhibited increased DSBs and enhanced sensitivity to cyst(e)inase. The blocking of a second antioxidant pathway (thioredoxin/thioredoxin reductase) using auranofin or inhibiting DNA repair using the poly (ADP-ribose) polymerase (PARP) inhibitor, olaparib, led to significant increases in DSBs following cyst(e)inase treatment in all PDAC cells examined. Cyst(e)inase plus olaparib also synergistically inhibited growth of sensitive and resistant PDAC cells in both xenograft and allograft tumor models. Collectively, these results demonstrate an important role for oxidative DNA damage and ultimately DNA DSBs in the anticancer action of cyst(e)inase. The data further show the potential for combining agents that target alternate antioxidant pathways or by targeting DNA repair pathways or genetic liabilities in DNA repair pathways to enhance the therapeutic action of cyst(e)inase for PDAC.


Asunto(s)
Cisteína/metabolismo , Daño del ADN , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/terapia , Animales , Auranofina/administración & dosificación , Daño del ADN/efectos de los fármacos , Modelos Animales de Enfermedad , Humanos , Ratones , Estrés Oxidativo , Neoplasias Pancreáticas/etiología , Especies Reactivas de Oxígeno , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Mol Carcinog ; 60(5): 342-353, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33713497

RESUMEN

The transcription factor Twist1 has been reported to be essential for the formation and invasiveness of chemically induced tumors in mouse skin. However, the impact of keratinocyte-specific Twist1 deletion on skin carcinogenesis caused by UVB radiation has not been reported. Deletion of Twist1 in basal keratinocytes of mouse epidermis using K5.Cre × Twist1flox/flox mice led to significantly reduced UVB-induced epidermal hyperproliferation. In addition, keratinocyte-specific deletion of Twist1 significantly suppressed UVB-induced skin carcinogenesis. Further analyses revealed that deletion of Twist1 in cultured keratinocytes or mouse epidermis in vivo led to keratinocyte differentiation. In this regard, deletion of Twist1 in epidermal keratinocytes showed significant induction of early and late differentiation markers, including TG1, K1, OVOL1, loricrin, and filaggrin. Similar results were obtained with topical application of harmine, a Harmala alkaloid that leads to degradation of Twist1. In contrast, overexpression of Twist1 in cultured keratinocytes suppressed calcium-induced differentiation. Further analyses using both K5.Cre × Twist1flox/flox mice and an inducible system where Twist1 was deleted in bulge region keratinocytes showed loss of expression of hair follicle stem/progenitor markers, including CD34, Lrig1, Lgr5, and Lgr6. These data support the conclusion that Twist1 has a direct role in maintaining the balance between proliferation and differentiation of keratinocytes and keratinocyte stem/progenitor populations. Collectively, these results demonstrate a critical role for Twist1 early in the process of UVB skin carcinogenesis, and that Twist1 may be a novel target for the prevention of cutaneous squamous cell carcinoma.


Asunto(s)
Carcinoma de Células Escamosas/genética , Neoplasias Cutáneas/genética , Proteína 1 Relacionada con Twist/genética , Rayos Ultravioleta/efectos adversos , Administración Tópica , Animales , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/etiología , Carcinoma de Células Escamosas/metabolismo , Diferenciación Celular , Células Cultivadas , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Técnicas de Inactivación de Genes , Harmina/administración & dosificación , Harmina/farmacología , Queratinocitos/citología , Queratinocitos/metabolismo , Queratinocitos/patología , Masculino , Ratones , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/etiología , Neoplasias Cutáneas/metabolismo
12.
Mol Carcinog ; 58(2): 185-195, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30346064

RESUMEN

Prevention remains an important strategy to reduce the burden of cancer. One approach to prevent cancer is the use of phytochemicals in various combinations as safe and effective cancer preventative agents. The purpose of this study was to examine the effects of the combination of ursolic acid (UA) and curcumin (Curc) for potential combinatorial inhibition of skin tumor promotion using the mouse two-stage skin carcinogenesis model. In short-term experiments, the combination of UA + Curc given topically prior to 12-O-tetradecanoylphorbol-13-acetate (TPA) significantly inhibited activation of epidermal EGFR, p70S6K, NF-κB p50, Src, c-Jun, Rb, and IκBα. Levels of c-Fos, c-Jun, and Cox-2 were also significantly reduced by the combination compared to the TPA treated group. The alterations in these signaling pathways by the combination of UA + Curc were associated with decreased epidermal proliferation as assessed by measuring BrdU incorporation. Significant effects were also seen with the combination on epidermal inflammatory gene expression and dermal inflammation, with the greatest effects on expression of IL-1ß, IL-6, IL-22, and CXCL2. Furthermore, results from skin tumor experiments demonstrated that the combination of UA + Curc given topically significantly inhibited mouse skin tumor promotion by TPA to a greater extent than the individual compounds given alone. The greatest effects were seen on tumor free survival, tumor size, and tumor weight, although tumor incidence and multiplicity were also further reduced by the combination. These results demonstrate the potential cancer chemopreventive activity and mechanism(s) for the combination of UA + Curc.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Curcumina/administración & dosificación , Neoplasias Cutáneas/tratamiento farmacológico , Acetato de Tetradecanoilforbol/efectos adversos , Triterpenos/administración & dosificación , Administración Tópica , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Quimiocina CXCL2/genética , Quimiocina CXCL2/metabolismo , Curcumina/farmacología , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Ratones , Transducción de Señal/efectos de los fármacos , Neoplasias Cutáneas/inducido químicamente , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo , Resultado del Tratamiento , Triterpenos/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Interleucina-22 , Ácido Ursólico
13.
Mol Carcinog ; 58(9): 1656-1669, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31237385

RESUMEN

In this study, we evaluated the role of signal transducer and activator of transcription 1 (STAT1) in response to acute solar ultraviolet (SUV) radiation in mouse epidermis. Analysis of the epidermis from SUV-irradiated mice revealed rapid phosphorylation of STAT1 (pSTAT1) on both tyrosine (tyr701) and serine (ser727) residues and increased levels of IRF-1 while later timepoints showed increased levels of unphosphorylated STAT1 (uSTAT1). STAT1 activation led to upregulation of several proinflammatory chemokine mRNAs in epidermis including Cxcl9, Cxcl10, and Ccl2, as well as, the immune checkpoint inhibitor Pd-l1. In addition, mRNA and protein levels of cyclooxygenase-2 (Cox-2/COX2) were upregulated in epidermis following exposure to SUV. Mice with keratinocyte-specific STAT1 deletion did not exhibit increased IRF-1 or proinflammatory gene expression in epidermis. Furthermore, epidermal COX-2 induction after SUV exposure was significantly reduced in mice with keratinocyte-specific deletion of STAT1. Additionally, SUV irradiation rapidly upregulated interferon gamma (IFNγ) mRNA in the epidermis and that skin resident epidermal CD3 + T-cells were the source of IFNγ production. IFNγ receptor-deficient mice confirmed dependency of STAT1 activation, proinflammatory gene expression and COX-2 upregulation in the epidermis on paracrine IFNγ signaling. Furthermore, keratinocyte-specific STAT1-deficiency reduced proliferation and hyperplasia due to SUV irradiation and this was associated with decreased immune infiltration of mast cells in the dermis. Collectively, the current results demonstrate that exposure to SUV leads to upregulation of IFNγ and downstream pSTAT1/IRF-1/uSTAT1 signaling in the epidermis. Further study of this pathway could lead to identification of novel targets for the prevention of nonmelanoma skin cancer.


Asunto(s)
Factor 1 Regulador del Interferón/metabolismo , Interferón gamma/metabolismo , Queratinocitos/metabolismo , Factor de Transcripción STAT1/metabolismo , Transducción de Señal/fisiología , Rayos Ultravioleta/efectos adversos , Animales , Complejo CD3/metabolismo , Ciclooxigenasa 2/metabolismo , Células Epidérmicas/metabolismo , Epidermis/metabolismo , Expresión Génica/fisiología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , ARN Mensajero/metabolismo , Piel/metabolismo , Neoplasias Cutáneas/metabolismo , Linfocitos T/metabolismo , Regulación hacia Arriba/fisiología
14.
Mol Carcinog ; 58(9): 1640-1647, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31264291

RESUMEN

T-cell protein tyrosine phosphatase (TC-PTP, encoded by PTPN2) is a nonreceptor PTP that is most highly expressed in hematopoietic tissues. TC-PTP modulates a variety of physiological functions including cell cycle progression, cell survival and proliferation, and hematopoiesis through tyrosine dephosphorylation of its target substrates, such as EGFR, JAK1, JAK3, STAT1, and STAT3. Studies with whole or tissue-specific loss of TC-PTP function transgenic mice have shown that TC-PTP has crucial roles in the regulation of the immune response, insulin signaling, and oncogenic signaling. More recently, the generation of epidermal-specific TC-PTP-deficient mice for use in multistage skin carcinogenesis bioassays demonstrated that TC-PTP suppresses skin tumor formation by negatively regulating STAT3 and AKT signaling. Further investigation showed that TC-PTP also minimizes UVB-induced epidermal cell damage by promoting apoptosis through the negative regulation of Flk-1/JNK signaling. These findings provide major evidence for a tumor suppressive function for TC-PTP against environment-induced skin cancer. Here, we will discuss TC-PTP, its substrates, and its functions with an emphasis on its role in skin carcinogenesis.


Asunto(s)
Carcinogénesis/metabolismo , Células Epiteliales/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 2/metabolismo , Animales , Ciclo Celular/fisiología , Proliferación Celular/fisiología , Supervivencia Celular/fisiología , Epidermis/metabolismo , Epidermis/fisiología , Células Epiteliales/fisiología , Hematopoyesis/fisiología , Humanos , Transducción de Señal/fisiología
15.
Mol Carcinog ; 58(10): 1715-1725, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31254372

RESUMEN

Cutaneous squamous cell carcinoma (cSCC) is a keratinocyte-derived invasive and metastatic tumor of the skin. It is the second-most commonly diagnosed form of skin cancer striking 200 000 Americans annually. Further, in organ transplant patients, there is a 65- to 100-fold increased incidence of cSCC compared to the general population. Excision of cSCC of the head and neck results in significant facial disfigurement. Therefore, increased understanding of the mechanisms involved in the pathogeneses of cSCC could identify means to prevent, inhibit, and reverse this process. In our previous studies, inhibition of fibroblast growth factor receptor (FGFR) significantly decreased ultraviolet B-induced epidermal hyperplasia and hyperproliferation in SKH-1 mice, suggesting an important role for FGFR signaling in skin cancer development. However, the role of FGFR signaling in the progression of cSCC is not yet elucidated. Analysis of the expression of FGFR in cSCC cells and normal epidermal keratinocytes revealed protein overexpression and increased FGFR2 activation in cSCC cells compared to normal keratinocytes. Further, tumor cell-specific overexpression of FGFR2 was detected in human cSCCs, whereas the expression of FGFR2 was low in premalignant lesions and normal skin. Pretreatment with the pan-FGFR inhibitor; AZD4547 significantly decreased cSCC cell-cycle traverse, proliferation, migration, and motility. Interestingly, AZD4547 also significantly downregulated mammalian target of rapamycin complex 1 and AKT activation in cSCC cells, suggesting an important role of these signaling pathways in FGFR-mediated effects. To further bolster the in vitro studies, NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice with SCC12A tumor xenografts treated with AZD4547 (15 mg/kg/bw, twice weekly oral gavage) exhibited significantly decreased tumor volume compared to the vehicle-only treatment group. The current studies provide mechanistic evidence for the role of FGFR and selectively FGFR2 in the early progression of cSCC and identifies FGFR as a putative therapeutic target in the treatment of skin cancer.


Asunto(s)
Benzamidas/farmacología , Carcinoma de Células Escamosas/tratamiento farmacológico , Piperazinas/farmacología , Pirazoles/farmacología , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Neoplasias Cutáneas/tratamiento farmacológico , Animales , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Epidermis/efectos de los fármacos , Epidermis/patología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Xenoinjertos , Humanos , Queratinocitos/efectos de los fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología
16.
Mol Carcinog ; 58(1): 102-112, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30302860

RESUMEN

Despite effective surgical methods for non-melanoma skin cancer (NMSC), patients suffer from tissue damage, scarring, or even disfigurement; thus, there is a need for chemopreventive approaches. Because of the complex interplay between glucocorticoids (GCs), inflammation, and cancer, we sought to determine the role of 11ß-hydroxysteroid dehydrogenase 1 and 2 (11ßHSD1 and 2) in regulating GCs during skin cancer development and progression. 11ßHSDs modulate the activation of GCs in a tissue-specific manner and have been reported to play a role in development and progression of other types of cancer, but their role has not yet been reported in NMSC. Here, we found a significant upregulation of 11ßHSD2 protein in skin cancer cells when compared to normal skin cells, suggesting a role for this enzyme in the multifactorial process of skin cancer development. In addition, inhibition of 11ßHSD2 with siRNA resulted in significant reduction in colony formation in vitro. Finally, our in vivo study elucidated that inhibition of 11ßHSD2 with pharmacological inhibitor, Glycyrrhetinic acid (GA) could significantly diminish tumorigenesis in a well-studied in vivo mouse model of NMSC. Overall, these studies highlight for the first time a potential novel role for 11ßHSD2 in NMSC development and may allow for new GC treatment approaches capable of avoiding deactivation by the enzyme. If 11ßHSD2 can be inhibited as we have done here, or circumvented using modified GCs, this may lead to more efficacious outcomes for NMSC patients by preventing deactivation of the GC and minimizing resistance.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasas/antagonistas & inhibidores , Antiinflamatorios/farmacología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Glucocorticoides/farmacología , Ácido Glicirretínico/farmacología , Neoplasias Cutáneas/prevención & control , Animales , Apoptosis , Proliferación Celular , Femenino , Humanos , Ratones , Neoplasias Cutáneas/enzimología , Neoplasias Cutáneas/patología , Células Tumorales Cultivadas
17.
PLoS Genet ; 12(1): e1005777, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26789196

RESUMEN

Medullary thymic epithelial cells (mTECs) are essential for establishing central tolerance by expressing a diverse array of self-peptides that delete autoreactive thymocytes and/or divert thymocytes into the regulatory T cell lineage. Activation of the NFκB signaling pathway in mTEC precursors is indispensable for mTEC maturation and proliferation resulting in proper medullary region formation. Here we show that the Stat3-mediated signaling pathway also plays a key role in mTEC development and homeostasis. Expression of a constitutively active Stat3 transgene targeted to the mTEC compartment increases mTEC cellularity and bypasses the requirement for signals from positively selected thymocytes to drive medullary region formation. Conversely, conditional deletion of Stat3 disrupts medullary region architecture and reduces the number of mTECs. Stat3 signaling does not affect mTEC proliferation, but rather promotes survival of immature MHCIIloCD80lo mTEC precursors. In contrast to striking alterations in the mTEC compartment, neither enforced expression nor deletion of Stat3 affects cTEC cellularity or organization. These results demonstrate that in addition to the NFkB pathway, Stat3-mediated signals play an essential role in regulating mTEC cellularity and medullary region homeostasis.


Asunto(s)
Diferenciación Celular/genética , Células Epiteliales/metabolismo , FN-kappa B/genética , Factor de Transcripción STAT3/biosíntesis , Animales , Antígenos CD40/genética , Desarrollo Embrionario/genética , Citometría de Flujo , Regulación del Desarrollo de la Expresión Génica , Activación de Linfocitos , Ratones , Factor de Transcripción STAT3/genética , Transducción de Señal , Linfocitos T/metabolismo , Timocitos/metabolismo , Timo/crecimiento & desarrollo , Timo/metabolismo , Transgenes
18.
Mol Carcinog ; 57(12): 1698-1706, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30129681

RESUMEN

The phytonutrient ursolic acid (UA), present in apples, rosemary, and other plant sources, has anti-cancer properties in a number of systems, including skin cancers. However, few reports have examined upstream mechanisms by which UA may prevent or treat cancer. Recent reports have indicated UA induces death of cancer cell lines via AMP-activated protein kinase (AMPK), an energy-sensing kinase which possesses both pro-metabolic and anti-cancer effects. Other studies have shown UA activates peroxisome proliferator activated receptor α (PPARα) and the glucocorticoid receptor (GR). Here, we found the cytotoxic effect of UA in skin carcinoma cells required AMPK activation. In addition, two inhibitors of PPARα partially reversed the cytotoxic effects of UA, suggesting its effects are at least partially mediated through this receptor. Finally, inhibition of the GR did not reverse the effects of UA nor did this compound bind the GR under the conditions of experiments performed. Overall, studies elucidating the anti-cancer effects of UA may allow for the development of more potent analogues utilizing similar mechanisms. These studies may also reveal the mediators of any possible side effects or resistance mechanisms to UA therapy.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Antineoplásicos Fitogénicos/farmacología , PPAR alfa/metabolismo , Neoplasias Cutáneas/metabolismo , Triterpenos/farmacología , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Transducción de Señal/efectos de los fármacos , Neoplasias Cutáneas/tratamiento farmacológico , Ácido Ursólico
19.
Mol Carcinog ; 57(3): 393-407, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29197120

RESUMEN

Adipose tissue dysregulation, a hallmark of obesity, contributes to a chronic state of low-grade inflammation and is associated with increased risk and progression of several breast cancer subtypes, including claudin-low breast tumors. Unfortunately, mechanistic targets for breaking the links between obesity-associated adipose tissue dysfunction, inflammation, and claudin-low breast cancer growth have not been elucidated. Ovariectomized female C57BL/6 mice were randomized (n = 15/group) to receive a control diet, a diet-induced obesity (DIO) diet, or a DIO + resveratrol (0.5% wt/wt) diet. Mice consumed these diets ad libitum throughout study and after 6 weeks were orthotopically injected with M-Wnt murine mammary tumor cells, a model of estrogen receptor (ER)-negative claudin-low breast cancer. Compared with controls, DIO mice displayed adipose dysregulation and metabolic perturbations including increased mammary adipocyte size, cyclooxygenase-2 (COX-2) expression, inflammatory eicosanoid levels, macrophage infiltration, and prevalence of crown-like structures (CLS). DIO mice (relative to controls) also had increased systemic inflammatory cytokines and decreased adipocyte expression of peroxisome proliferator-activated receptor gamma (PPARγ) and other adipogenesis-regulating genes. Supplementing the DIO diet with resveratrol prevented obesity-associated increases in mammary tumor growth, mammary adipocyte hypertrophy, COX-2 expression, macrophage infiltration, CLS prevalence, and serum cytokines. Resveratrol also offset the obesity-associated downregulation of adipocyte PPARγ and other adipogenesis genes in DIO mice. Our findings suggest that resveratrol may inhibit obesity-associated inflammation and claudin-low breast cancer growth by inhibiting adipocyte hypertrophy and associated adipose tissue dysregulation that typically accompanies obesity.


Asunto(s)
Tejido Adiposo/efectos de los fármacos , Antiinflamatorios no Esteroideos/uso terapéutico , Antineoplásicos Fitogénicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Resveratrol/uso terapéutico , Tejido Adiposo/fisiopatología , Animales , Neoplasias de la Mama/complicaciones , Neoplasias de la Mama/fisiopatología , Modelos Animales de Enfermedad , Femenino , Ratones Endogámicos C57BL , Obesidad/complicaciones , Obesidad/fisiopatología , Posmenopausia
20.
Mol Carcinog ; 55(12): 1889-1898, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-26649644

RESUMEN

Stat3 is a member of the signal transducers and activators of transcription family and is a known regulator of essential biologic processes including angiogenesis, apoptosis, cell cycle progression, and cell migration. Canonical Stat3-mediated signaling involves tyrosine phosphorylation on specific residues that leads to homodimerization and translocation to the nucleus. For many years it was presumed that most, if not all, of the functions of Stat3, both normal and aberrant, were due to the canonical cytokine and growth factor signaling mechanisms. Recent studies suggest that Stat3 functions through alternate non-canonical pathways to bring about some of these biological functions both in normal cells as well as during cancer development and progression. A number of studies have now shown that Stat3 has a function in mitochondria and that unphosphorylated Stat3 (uStat3) can also function as a transcription factor broadening the potential mechanisms involved in Stat3 action. In this review article, we discuss these two main non-canonical functions of Stat3 and their potential roles in oncogenesis. Given the many facets of Stat3 signaling, additional comprehensive investigations are required to fully understand the role of non-canonical Stat3 signaling in cancer and whether these pathways can be targeted for cancer prevention and treatment. © 2015 Wiley Periodicals, Inc.


Asunto(s)
Neoplasias/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Animales , Humanos , Mitocondrias/metabolismo , Mitocondrias/patología , Neoplasias/patología , Fosforilación , Factor de Transcripción STAT3/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA