Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Cell Sci ; 125(Pt 16): 3904-13, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22573824

RESUMEN

Virtually all motile eukaryotic cilia and flagella have a '9+2' axoneme in which nine doublet microtubules surround two singlet microtubules. Associated with the central pair of microtubules are protein complexes that form at least seven biochemically and structurally distinct central pair projections. Analysis of mutants lacking specific projections has indicated that each may play a unique role in the control of flagellar motility. One of these is the C1d projection previously shown to contain the proteins FAP54, FAP46, FAP74 and FAP221/Pcdp1, which exhibits Ca(2+)-sensitive calmodulin binding. Here we report the isolation and characterization of a Chlamydomonas reinhardtii null mutant for FAP46. This mutant, fap46-1, lacks the C1d projection and has impaired motility, confirming the importance of this projection for normal flagellar movement. Those cells that are motile have severe defects in phototaxis and the photoshock response, underscoring a role for the C1d projection in Ca(2+)-mediated flagellar behavior. The data also reveal for the first time that the C1d projection is involved in the control of interdoublet sliding velocity. Our studies further identify a novel C1d subunit that we term C1d-87, give new insight into relationships between the C1d subunits, and provide evidence for multiple sites of calmodulin interaction within the C1d projection. These results represent significant advances in our understanding of an important but little studied axonemal structure.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Cilios/metabolismo , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Axonema/metabolismo , Movimiento Celular/fisiología , Chlamydomonas reinhardtii/crecimiento & desarrollo , Flagelos/metabolismo , Humanos , Datos de Secuencia Molecular , Unión Proteica
2.
Science ; 344(6186): 871-7, 2014 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-24855263

RESUMEN

Novel vaccines are urgently needed to reduce the burden of severe malaria. Using a differential whole-proteome screening method, we identified Plasmodium falciparum schizont egress antigen-1 (PfSEA-1), a 244-kilodalton parasite antigen expressed in schizont-infected red blood cells (RBCs). Antibodies to PfSEA-1 decreased parasite replication by arresting schizont rupture, and conditional disruption of PfSEA-1 resulted in a profound parasite replication defect. Vaccination of mice with recombinant Plasmodium berghei PbSEA-1 significantly reduced parasitemia and delayed mortality after lethal challenge with the Plasmodium berghei strain ANKA. Tanzanian children with antibodies to recombinant PfSEA-1A (rPfSEA-1A) did not experience severe malaria, and Kenyan adolescents and adults with antibodies to rPfSEA-1A had significantly lower parasite densities than individuals without these antibodies. By blocking schizont egress, PfSEA-1 may synergize with other vaccines targeting hepatocyte and RBC invasion.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/inmunología , Eritrocitos/parasitología , Vacunas contra la Malaria/inmunología , Malaria Falciparum/prevención & control , Plasmodium falciparum/crecimiento & desarrollo , Proteínas Protozoarias/inmunología , Esquizontes/crecimiento & desarrollo , Adolescente , Adulto , Animales , Anticuerpos Antiprotozoarios/sangre , Niño , Hepatocitos/inmunología , Hepatocitos/parasitología , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Kenia , Malaria/prevención & control , Ratones , Plasmodium berghei/inmunología , Plasmodium falciparum/inmunología , Proteínas Recombinantes/inmunología , Adulto Joven
3.
Methods Enzymol ; 524: 37-57, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23498733

RESUMEN

The axonemal microtubules of cilia/flagella act as a scaffold for assembly of the protein complexes that ultimately regulate dynein activity to control the size and shape of ciliary bends. Despite our general understanding of the contribution of microtubule sliding to ciliary and flagellar motility, many questions regarding the regulation of dynein remain unanswered. For example, we know that the second messenger calcium plays an important role in modulating dynein activity in response to extracellular cues, but it remains unclear how calcium-binding proteins anchored to the axoneme contribute to this regulation. Recent work has focused on determining the identity and specific functions of these axonemal calcium-binding proteins. Here, we review our current knowledge of calcium-mediated motility and highlight key experiments that have substantially aided our understanding of calcium signaling within the axoneme.


Asunto(s)
Proteínas Algáceas/metabolismo , Dineínas Axonemales/metabolismo , Axonema/metabolismo , Calcio/metabolismo , Calmodulina/metabolismo , Chlamydomonas reinhardtii/metabolismo , Flagelos/metabolismo , Proteínas Algáceas/genética , Dineínas Axonemales/genética , Axonema/química , Axonema/genética , Señalización del Calcio/fisiología , Calmodulina/genética , Movimiento Celular , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/genética , Electroforesis en Gel de Poliacrilamida , Flagelos/química , Flagelos/genética , Inmunoprecipitación , Luz , Procesos Fotoquímicos
4.
Mol Biol Cell ; 22(23): 4527-38, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21998195

RESUMEN

Generating the complex waveforms characteristic of beating cilia requires the coordinated activity of multiple dynein isoforms anchored to the axoneme. We previously identified a complex associated with the C1d projection of the central apparatus that includes primary ciliary dyskinesia protein 1 (Pcdp1). Reduced expression of complex members results in severe motility defects, indicating that C1d is essential for wild-type ciliary beating. To define a mechanism for Pcdp1/C1d regulation of motility, we took a functional and structural approach combined with mutants lacking C1d and distinct subsets of dynein arms. Unlike mutants completely lacking the central apparatus, dynein-driven microtubule sliding velocities are wild type in C1d- defective mutants. However, coordination of dynein activity among microtubule doublets is severely disrupted. Remarkably, mutations in either outer or inner dynein arm restore motility to mutants lacking C1d, although waveforms and beat frequency differ depending on which isoform is mutated. These results define a unique role for C1d in coordinating the activity of specific dynein isoforms to control ciliary motility.


Asunto(s)
Chlamydomonas reinhardtii/citología , Chlamydomonas reinhardtii/metabolismo , Dineínas/metabolismo , Proteínas de Plantas/metabolismo , Chlamydomonas reinhardtii/genética , Microtúbulos/metabolismo , Mutación , Proteínas de Plantas/genética , Isoformas de Proteínas
5.
J Cell Biol ; 189(3): 601-12, 2010 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-20421426

RESUMEN

For all motile eukaryotic cilia and flagella, beating is regulated by changes in intraciliary calcium concentration. Although the mechanism for calcium regulation is not understood, numerous studies have shown that calmodulin (CaM) is a key axonemal calcium sensor. Using anti-CaM antibodies and Chlamydomonas reinhardtii axonemal extracts, we precipitated a complex that includes four polypeptides and that specifically interacts with CaM in high [Ca(2+)]. One of the complex members, FAP221, is an orthologue of mammalian Pcdp1 (primary ciliary dyskinesia protein 1). Both FAP221 and mammalian Pcdp1 specifically bind CaM in high [Ca(2+)]. Reduced expression of Pcdp1 complex members in C. reinhardtii results in failure of the C1d central pair projection to assemble and significant impairment of motility including uncoordinated bends, severely reduced beat frequency, and altered waveforms. These combined results reveal that the central pair Pcdp1 (FAP221) complex is essential for control of ciliary motility.


Asunto(s)
Proteínas Algáceas/metabolismo , Proteínas de Unión a Calmodulina/metabolismo , Calmodulina/metabolismo , Cilios/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas Algáceas/genética , Animales , Proteínas de Unión a Calmodulina/genética , Movimiento Celular , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Ratones , Proteínas/química , Proteínas/genética , Proteínas Protozoarias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA