Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Arch Toxicol ; 98(1): 95-119, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37964100

RESUMEN

Life expectancy has increased immensely over the past decades, bringing new challenges to the health systems as advanced age increases the predisposition for many diseases. One of those is the burden of neurologic disorders. While many hypotheses have been placed to explain aging mechanisms, it has been widely accepted that the increasing pro-inflammatory status with advanced age or "inflammaging" is a main determinant of biological aging. Furthermore, inflammaging is at the cornerstone of many age-related diseases and its involvement in neurologic disorders is an exciting hypothesis. Indeed, aging and neurologic disorders development in the elderly seem to share some basic pathways that fundamentally converge on inflammation. Peripheral inflammation significantly influences brain function and contributes to the development of neurological disorders, including Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Understanding the role of inflammation in the pathogenesis of progressive neurological diseases is of crucial importance for developing effective treatments and interventions that can slow down or prevent disease progression, therefore, decreasing its social and economic burden.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades del Sistema Nervioso , Enfermedad de Parkinson , Humanos , Anciano , Inflamación , Envejecimiento
2.
Int J Mol Sci ; 24(17)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37685929

RESUMEN

Long-term cognitive dysfunction, or "chemobrain", has been observed in cancer patients treated with chemotherapy. Mitoxantrone (MTX) is a topoisomerase II inhibitor that binds and intercalates with DNA, being used in the treatment of several cancers and multiple sclerosis. Although MTX can induce chemobrain, its neurotoxic mechanisms are poorly studied. This work aimed to identify the adverse outcome pathways (AOPs) activated in the brain upon the use of a clinically relevant cumulative dose of MTX. Three-month-old male CD-1 mice were given a biweekly intraperitoneal administration of MTX over the course of three weeks until reaching a total cumulative dose of 6 mg/kg. Controls were given sterile saline in the same schedule. Two weeks after the last administration, the mice were euthanized and their brains removed. The left brain hemisphere was used for targeted profiling of the metabolism of glutathione and the right hemisphere for an untargeted metabolomics approach. The obtained results revealed that MTX treatment reduced the availability of cysteine (Cys), cysteinylglycine (CysGly), and reduced glutathione (GSH) suggesting that MTX disrupts glutathione metabolism. The untargeted approach revealed metabolic circuits of phosphatidylethanolamine, catecholamines, unsaturated fatty acids biosynthesis, and glycerolipids as relevant players in AOPs of MTX in our in vivo model. As far as we know, our study was the first to perform such a broad profiling study on pathways that could put patients given MTX at risk of cognitive deficits.


Asunto(s)
Deterioro Cognitivo Relacionado con la Quimioterapia , Mitoxantrona , Masculino , Animales , Ratones , Metabolómica , Glutatión , Encéfalo , Redes y Vías Metabólicas , Lípidos
3.
Arch Toxicol ; 96(1): 11-78, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34725718

RESUMEN

Cognitive dysfunction has been one of the most reported and studied adverse effects of cancer treatment, but, for many years, it was overlooked by the medical community. Nevertheless, the medical and scientific communities have now recognized that the cognitive deficits caused by chemotherapy have a strong impact on the morbidity of cancer treated patients. In fact, chemotherapy-induced cognitive dysfunction or 'chemobrain'  (also named also chemofog) is at present a well-recognized effect of chemotherapy that could affect up to 78% of treated patients. Nonetheless, its underlying neurotoxic mechanism is still not fully elucidated. Therefore, this work aimed to provide a comprehensive review using PubMed as a database to assess the studies published on the field and, therefore, highlight the clinical manifestations of chemobrain and the putative neurotoxicity mechanisms.In the last two decades, a great number of papers was published on the topic, mainly with clinical observations. Chemotherapy-treated patients showed that the cognitive domains most often impaired were verbal memory, psychomotor function, visual memory, visuospatial and verbal learning, memory function and attention. Chemotherapy alters the brain's metabolism, white and grey matter and functional connectivity of brain areas. Several mechanisms have been proposed to cause chemobrain but increase of proinflammatory cytokines with oxidative stress seem more relevant, not excluding the action on neurotransmission and cellular death or impaired hippocampal neurogenesis. The interplay between these mechanisms and susceptible factors makes the clinical management of chemobrain even more difficult. New studies, mainly referring to the underlying mechanisms of chemobrain and protective measures, are important in the future, as it is expected that chemobrain will have more clinical impact in the coming years, since the number of cancer survivors is steadily increasing.


Asunto(s)
Antineoplásicos , Deterioro Cognitivo Relacionado con la Quimioterapia , Trastornos del Conocimiento , Disfunción Cognitiva , Neoplasias , Animales , Antineoplásicos/toxicidad , Encéfalo , Trastornos del Conocimiento/inducido químicamente , Disfunción Cognitiva/inducido químicamente , Humanos , Neoplasias/tratamiento farmacológico
4.
Arch Toxicol ; 96(6): 1767-1782, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35306571

RESUMEN

Mitoxantrone (MTX) is a topoisomerase II inhibitor used to treat a wide range of tumors and multiple sclerosis but associated with potential neurotoxic effects mediated by hitherto poorly understood mechanisms. In adult male CD-1 mice, the underlying neurotoxic pathways of a clinically relevant cumulative dose of 6 mg/kg MTX was evaluated after biweekly administration for 3 weeks and sacrifice 1 week after the last administration was undertaken. Oxidative stress, neuronal damage, apoptosis, and autophagy were analyzed in whole brain, while coronal brain sections were used for a closer look in the hippocampal formation (HF) and the prefrontal cortex (PFC), as these areas have been signaled out as the most affected in 'chemobrain'. In the whole brain, MTX-induced redox imbalance shown as increased endothelial nitric oxide synthase and reduced manganese superoxide dismutase expression, as well as a tendency to a decrease in glutathione levels. MTX also caused diminished ATP synthase ß expression, increased autophagic protein LC3 II and tended to decrease p62 expression. Postsynaptic density protein 95 expression decreased in the whole brain, while hyperphosphorylation of Tau was seen in PFC. A reduction in volume was observed in the dentate gyrus (DG) and CA1 region of the HF, while GFAP-ir astrocytes increased in all regions of the HF except in the DG. Apoptotic marker Bax increased in the PFC and in the CA3 region, whereas p53 decreased in all brain areas evaluated. MTX causes damage in the brain of adult CD-1 mice in a clinically relevant cumulative dose in areas involved in memory and cognition.


Asunto(s)
Deterioro Cognitivo Relacionado con la Quimioterapia , Animales , Autofagia , Masculino , Ratones , Mitoxantrona/toxicidad , Neuronas , Estrés Oxidativo
5.
Heliyon ; 10(11): e31608, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38868005

RESUMEN

Doxorubicin (DOX) is an anthracycline used to treat a wide range of tumours. Despite its effectiveness, it is associated with a long range of adverse effects, of which cognitive deficits stand out. The present study aimed to assess the neurologic adverse outcome pathways of two clinically relevant cumulative doses of DOX. Adult male CD-1 mice received biweekly intraperitoneal administrations for 3 weeks until reaching cumulative doses of 9 mg/kg (DOX9) or 18 mg/kg (DOX18). Animals were euthanized one week after the last administration, and biomarkers of oxidative stress and brain metabolism were evaluated in the whole brain. Coronal sections of fixed brains were used for specific determinations of the prefrontal cortex (PFC) and hippocampal formation (HF). In the whole brain, DOX18 tended to disrupt the antioxidant defences, affecting glutathione levels and manganese superoxide dismutase expression. Considering the regional analysis, DOX18 increased the volume of all brain areas evaluated, while GFAP-immunoreactive astrocytes decreased in the dentate gyrus (DG) and increased in the CA3 region of HF, both in a dose-dependent manner. Concerning the apoptosis pathway, whereas Bax increased in the DOX9 group, it decreased in the DOX18 group. Only in the latter group did Bcl-2 levels also decrease. While p53 only increased in the CA3 region of the DOX9 group, AIF increased in the PFC and DG of DOX18. Finally, phosphorylation of Tau decreased with the highest DOX dose in DG and CA3, while TNF-α levels increased in CA1 of DOX18. Our results indicate new pathways not yet described that could be responsible for the cognitive impairments observed in treated patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA