Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Development ; 148(16)2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34345920

RESUMEN

The melastatin subfamily of the transient receptor potential channels (TRPM) are regulators of pancreatic ß-cell function. TRPM7 is the most abundant islet TRPM channel; however, the role of TRPM7 in ß-cell function has not been determined. Here, we used various spatiotemporal transgenic mouse models to investigate how TRPM7 knockout influences pancreatic endocrine development, proliferation and function. Ablation of TRPM7 within pancreatic progenitors reduced pancreatic size, and α-cell and ß-cell mass. This resulted in modestly impaired glucose tolerance. However, TRPM7 ablation following endocrine specification or in adult mice did not impact endocrine expansion or glucose tolerance. As TRPM7 regulates cell proliferation, we assessed how TRPM7 influences ß-cell hyperplasia under insulin-resistant conditions. ß-Cell proliferation induced by high-fat diet was significantly decreased in TRPM7-deficient ß-cells. The endocrine roles of TRPM7 may be influenced by cation flux through the channel, and indeed we found that TRPM7 ablation altered ß-cell Mg2+ and reduced the magnitude of elevation in ß-cell Mg2+ during proliferation. Together, these findings revealed that TRPM7 controls pancreatic development and ß-cell proliferation, which is likely due to regulation of Mg2+ homeostasis.


Asunto(s)
Proliferación Celular/genética , Dieta Alta en Grasa , Secreción de Insulina/genética , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Páncreas/crecimiento & desarrollo , Páncreas/metabolismo , Canales Catiónicos TRPM/metabolismo , Animales , Células Cultivadas , Técnicas de Inactivación de Genes , Intolerancia a la Glucosa/genética , Homeostasis/genética , Magnesio/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Canales Catiónicos TRPM/genética
2.
Diabetes Obes Metab ; 24(9): 1741-1752, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35546791

RESUMEN

AIM: To determine whether hyperpolarization-activated cyclic nucleotide-gated (HCN) channels impact glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) modulation of islet Ca2+ handling and insulin secretion. METHODS: The impact of liraglutide (GLP-1 analogue) on islet Ca2+ handling, HCN currents and insulin secretion was monitored with fluorescence microscopy, electrophysiology and enzyme immunoassays, respectively. Furthermore, liraglutide-mediated ß-to-δ-cell cross-communication was assessed following selective ablation of either mouse islet δ or ß cells. RESULTS: Liraglutide increased ß-cell Ca2+ oscillation frequency in mouse and human islets under stimulatory glucose conditions. This was dependent in part on liraglutide activation of HCN channels, which also enhanced insulin secretion. Similarly, liraglutide activation of HCN channels also increased ß-cell Ca2+ oscillation frequency in islets from rodents exposed to a diabetogenic diet. Interestingly, liraglutide accelerated Ca2+ oscillations in a majority of islet δ cells, which showed synchronized Ca2+ oscillations equivalent to ß cells; therefore, we assessed if either cell type was driving this liraglutide-mediated islet Ca2+ response. Although δ-cell loss did not impact liraglutide-mediated increase in ß-cell Ca2+ oscillation frequency, ß-cell ablation attenuated liraglutide-facilitated acceleration of δ-cell Ca2+ oscillations. CONCLUSION: The data presented here show that liraglutide-induced stimulation of islet HCN channels augments Ca2+ oscillation frequency. As insulin secretion oscillates with ß-cell Ca2+ , these findings have important implications for pulsatile insulin secretion that is probably enhanced by liraglutide activation of HCN channels and therapeutics that target GLP-1Rs for treating diabetes. Furthermore, these studies suggest that liraglutide as well as GLP-1-based therapies enhance δ-cell Ca2+ oscillation frequency and somatostatin secretion kinetics in a ß-cell-dependent manner.


Asunto(s)
Islotes Pancreáticos , Liraglutida , Animales , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Insulina/metabolismo , Secreción de Insulina , Islotes Pancreáticos/metabolismo , Liraglutida/farmacología , Ratones
3.
J Neurosci ; 40(10): 2000-2014, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-32019829

RESUMEN

The activation of neuronal plasma membrane Ca2+ channels stimulates many intracellular responses. Scaffolding proteins can preferentially couple specific Ca2+ channels to distinct downstream outputs, such as increased gene expression, but the molecular mechanisms that underlie the exquisite specificity of these signaling pathways are incompletely understood. Here, we show that complexes containing CaMKII and Shank3, a postsynaptic scaffolding protein known to interact with L-type calcium channels (LTCCs), can be specifically coimmunoprecipitated from mouse forebrain extracts. Activated purified CaMKIIα also directly binds Shank3 between residues 829 and 1130. Mutation of Shank3 residues 949Arg-Arg-Lys951 to three alanines disrupts CaMKII binding in vitro and CaMKII association with Shank3 in heterologous cells. Our shRNA/rescue studies revealed that Shank3 binding to both CaMKII and LTCCs is important for increased phosphorylation of the nuclear CREB transcription factor and expression of c-Fos induced by depolarization of cultured hippocampal neurons. Thus, this novel CaMKII-Shank3 interaction is essential for the initiation of a specific long-range signal from LTCCs in the plasma membrane to the nucleus that is required for activity-dependent changes in neuronal gene expression during learning and memory.SIGNIFICANCE STATEMENT Precise neuronal expression of genes is essential for normal brain function. Proteins involved in signaling pathways that underlie activity-dependent gene expression, such as CaMKII, Shank3, and L-type calcium channels, are often mutated in multiple neuropsychiatric disorders. Shank3 and CaMKII were previously shown to bind L-type calcium channels, and we show here that Shank3 also binds to CaMKII. Our data show that each of these interactions is required for depolarization-induced phosphorylation of the CREB nuclear transcription factor, which stimulates the expression of c-Fos, a neuronal immediate early gene with key roles in synaptic plasticity, brain development, and behavior.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Núcleo Celular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Animales , Regulación de la Expresión Génica/fisiología , Hipocampo/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos , Transducción de Señal/fisiología
4.
Diabetologia ; 64(4): 850-864, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33492421

RESUMEN

AIMS/HYPOTHESIS: Variants close to the VPS13C/C2CD4A/C2CD4B locus are associated with altered risk of type 2 diabetes in genome-wide association studies. While previous functional work has suggested roles for VPS13C and C2CD4A in disease development, none has explored the role of C2CD4B. METHODS: CRISPR/Cas9-induced global C2cd4b-knockout mice and zebrafish larvae with c2cd4a deletion were used to study the role of this gene in glucose homeostasis. C2 calcium dependent domain containing protein (C2CD)4A and C2CD4B constructs tagged with FLAG or green fluorescent protein were generated to investigate subcellular dynamics using confocal or near-field microscopy and to identify interacting partners by mass spectrometry. RESULTS: Systemic inactivation of C2cd4b in mice led to marked, but highly sexually dimorphic changes in body weight and glucose homeostasis. Female C2cd4b mice displayed unchanged body weight compared with control littermates, but abnormal glucose tolerance (AUC, p = 0.01) and defective in vivo, but not in vitro, insulin secretion (p = 0.02). This was associated with a marked decrease in follicle-stimulating hormone levels as compared with wild-type (WT) littermates (p = 0.003). In sharp contrast, male C2cd4b null mice displayed essentially normal glucose tolerance but an increase in body weight (p < 0.001) and fasting blood glucose (p = 0.003) after maintenance on a high-fat and -sucrose diet vs WT littermates. No metabolic disturbances were observed after global inactivation of C2cd4a in mice, or in pancreatic beta cell function at larval stages in C2cd4a null zebrafish. Fasting blood glucose levels were also unaltered in adult C2cd4a-null fish. C2CD4B and C2CD4A were partially localised to the plasma membrane, with the latter under the control of intracellular Ca2+. Binding partners for both included secretory-granule-localised PTPRN2/phogrin. CONCLUSIONS/INTERPRETATION: Our studies suggest that C2cd4b may act centrally in the pituitary to influence sex-dependent circuits that control pancreatic beta cell function and glucose tolerance in rodents. However, the absence of sexual dimorphism in the impact of diabetes risk variants argues for additional roles for C2CD4A or VPS13C in the control of glucose homeostasis in humans. DATA AVAILABILITY: The datasets generated and/or analysed during the current study are available in the Biorxiv repository ( www.biorxiv.org/content/10.1101/2020.05.18.099200v1 ). RNA-Seq (GSE152576) and proteomics (PXD021597) data have been deposited to GEO ( www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE152576 ) and ProteomeXchange ( www.ebi.ac.uk/pride/archive/projects/PXD021597 ) repositories, respectively.


Asunto(s)
Glucemia/metabolismo , Diabetes Mellitus Tipo 2/genética , Homeostasis/genética , Células Secretoras de Insulina/metabolismo , Proteínas Nucleares/genética , Factores de Transcripción/genética , Animales , Biomarcadores/sangre , Glucemia/genética , Femenino , Hormona Folículo Estimulante/sangre , Genotipo , Humanos , Insulina/sangre , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Hipófisis/metabolismo , Caracteres Sexuales , Aumento de Peso , Pez Cebra/sangre , Pez Cebra/genética , Proteínas de Pez Cebra/sangre , Proteínas de Pez Cebra/genética
5.
Diabetologia ; 63(7): 1368-1381, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32350566

RESUMEN

AIMS/HYPOTHESIS: Mitochondrial oxidative metabolism is central to glucose-stimulated insulin secretion (GSIS). Whether Ca2+ uptake into pancreatic beta cell mitochondria potentiates or antagonises this process is still a matter of debate. Although the mitochondrial Ca2+ importer (MCU) complex is thought to represent the main route for Ca2+ transport across the inner mitochondrial membrane, its role in beta cells has not previously been examined in vivo. METHODS: Here, we inactivated the pore-forming subunit of the MCU, encoded by Mcu, selectively in mouse beta cells using Ins1Cre-mediated recombination. Whole or dissociated pancreatic islets were isolated and used for live beta cell fluorescence imaging of cytosolic or mitochondrial Ca2+ concentration and ATP production in response to increasing glucose concentrations. Electrophysiological recordings were also performed on whole islets. Serum and blood samples were collected to examine oral and i.p. glucose tolerance. RESULTS: Glucose-stimulated mitochondrial Ca2+ accumulation (p< 0.05), ATP production (p< 0.05) and insulin secretion (p< 0.01) were strongly inhibited in beta cell-specific Mcu-null (ßMcu-KO) animals, in vitro, as compared with wild-type (WT) mice. Interestingly, cytosolic Ca2+ concentrations increased (p< 0.001), whereas mitochondrial membrane depolarisation improved in ßMcu-KO animals. ßMcu-KO mice displayed impaired in vivo insulin secretion at 5 min (p< 0.001) but not 15 min post-i.p. injection of glucose, whilst the opposite phenomenon was observed following an oral gavage at 5 min. Unexpectedly, glucose tolerance was improved (p< 0.05) in young ßMcu-KO (<12 weeks), but not in older animals vs WT mice. CONCLUSIONS/INTERPRETATION: MCU is crucial for mitochondrial Ca2+ uptake in pancreatic beta cells and is required for normal GSIS. The apparent compensatory mechanisms that maintain glucose tolerance in ßMcu-KO mice remain to be established.


Asunto(s)
Calcio/metabolismo , Mitocondrias/metabolismo , Animales , Western Blotting , Electroforesis en Gel de Poliacrilamida , Glucosa/metabolismo , Secreción de Insulina/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
6.
J Physiol ; 598(21): 4887-4905, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32790176

RESUMEN

KEY POINTS: Tetraspanin (TSPAN) proteins regulate many biological processes, including intracellular calcium (Ca2+ ) handling. TSPAN-7 is enriched in pancreatic islet cells; however, the function of islet TSPAN-7 has not been identified. Here, we characterize how ß-cell TSPAN-7 regulates Ca2+ handling and hormone secretion. We find that TSPAN-7 reduces ß-cell glucose-stimulated Ca2+ entry, slows Ca2+ oscillation frequency and decreases glucose-stimulated insulin secretion. TSPAN-7 controls ß-cell function through a direct interaction with L-type voltage-dependent Ca2+ channels (CaV 1.2 and CaV 1.3), which reduces channel Ca2+ conductance. TSPAN-7 slows activation of CaV 1.2 and accelerates recovery from voltage-dependent inactivation; TSPAN-7 also slows CaV 1.3 inactivation kinetics. These findings strongly implicate TSPAN-7 as a key regulator in determining the set-point of glucose-stimulated Ca2+ influx and insulin secretion. ABSTRACT: Glucose-stimulated insulin secretion (GSIS) is regulated by calcium (Ca2+ ) entry into pancreatic ß-cells through voltage-dependent Ca2+ (CaV ) channels. Tetraspanin (TSPAN) transmembrane proteins control Ca2+ handling, and thus they may also modulate GSIS. TSPAN-7 is the most abundant islet TSPAN and immunostaining of mouse and human pancreatic slices shows that TSPAN-7 is highly expressed in ß- and α-cells; however, the function of islet TSPAN-7 has not been determined. Here, we show that TSPAN-7 knockdown (KD) increases glucose-stimulated Ca2+ influx into mouse and human ß-cells. Additionally, mouse ß-cell Ca2+ oscillation frequency was accelerated by TSPAN-7 KD. Because TSPAN-7 KD also enhanced Ca2+ entry when membrane potential was clamped with depolarization, the effect of TSPAN-7 on CaV channel activity was examined. TSPAN-7 KD enhanced L-type CaV currents in mouse and human ß-cells. Conversely, heterologous expression of TSPAN-7 with CaV 1.2 and CaV 1.3 L-type CaV channels decreased CaV currents and reduced Ca2+ influx through both channels. This was presumably the result of a direct interaction of TSPAN-7 and L-type CaV channels because TSPAN-7 coimmunoprecipitated with both CaV 1.2 and CaV 1.3 from primary human ß-cells and from a heterologous expression system. Finally, TSPAN-7 KD in human ß-cells increased basal (5.6 mM glucose) and stimulated (45 mM KCl + 14 mM glucose) insulin secretion. These findings strongly suggest that TSPAN-7 modulation of ß-cell L-type CaV channels is a key determinant of ß-cell glucose-stimulated Ca2+ entry and thus the set-point of GSIS.


Asunto(s)
Células Secretoras de Glucagón , Células Secretoras de Insulina , Animales , Calcio/metabolismo , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Células Secretoras de Glucagón/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Ratones
7.
Am J Physiol Endocrinol Metab ; 316(4): E646-E659, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30694690

RESUMEN

Pancreatic α-cells exhibit oscillations in cytosolic Ca2+ (Ca2+c), which control pulsatile glucagon (GCG) secretion. However, the mechanisms that modulate α-cell Ca2+c oscillations have not been elucidated. As ß-cell Ca2+c oscillations are regulated in part by Ca2+-activated K+ (Kslow) currents, this work investigated the role of Kslow in α-cell Ca2+ handling and GCG secretion. α-Cells displayed Kslow currents that were dependent on Ca2+ influx through L- and P/Q-type voltage-dependent Ca2+ channels (VDCCs) as well as Ca2+ released from endoplasmic reticulum stores. α-Cell Kslow was decreased by small-conductance Ca2+-activated K+ (SK) channel inhibitors apamin and UCL 1684, large-conductance Ca2+-activated K+ (BK) channel inhibitor iberiotoxin (IbTx), and intermediate-conductance Ca2+-activated K+ (IK) channel inhibitor TRAM 34. Moreover, partial inhibition of α-cell Kslow with apamin depolarized membrane potential ( Vm) (3.8 ± 0.7 mV) and reduced action potential (AP) amplitude (10.4 ± 1.9 mV). Although apamin transiently increased Ca2+ influx into α-cells at low glucose (42.9 ± 10.6%), sustained SK (38.5 ± 10.4%) or BK channel inhibition (31.0 ± 11.7%) decreased α-cell Ca2+ influx. Total α-cell Ca2+c was similarly reduced (28.3 ± 11.1%) following prolonged treatment with high glucose, but it was not decreased further by SK or BK channel inhibition. Consistent with reduced α-cell Ca2+c following prolonged Kslow inhibition, apamin decreased GCG secretion from mouse (20.4 ± 4.2%) and human (27.7 ± 13.1%) islets at low glucose. These data demonstrate that Kslow activation provides a hyperpolarizing influence on α-cell Vm that sustains Ca2+ entry during hypoglycemic conditions, presumably by preventing voltage-dependent inactivation of P/Q-type VDCCs. Thus, when α-cell Ca2+c is elevated during secretagogue stimulation, Kslow activation helps to preserve GCG secretion.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Células Secretoras de Glucagón/metabolismo , Glucagón/metabolismo , Glucosa/metabolismo , Canales de Potasio Calcio-Activados/metabolismo , Alcanos/farmacología , Animales , Apamina/farmacología , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo P/metabolismo , Canales de Calcio Tipo Q/metabolismo , Retículo Endoplásmico/metabolismo , Ratones , Ratones Transgénicos , Técnicas de Placa-Clamp , Péptidos/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio Calcio-Activados/antagonistas & inhibidores , Pirazoles/farmacología , Compuestos de Quinolinio/farmacología
8.
bioRxiv ; 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-37546831

RESUMEN

The gain-of-function mutation in the TALK-1 K + channel (p.L114P) is associated with maturity-onset diabetes of the young (MODY). TALK-1 is a key regulator of ß-cell electrical activity and glucose-stimulated insulin secretion (GSIS). The KCNK16 gene encoding TALK-1, is the most abundant and ß-cell-restricted K + channel transcript. To investigate the impact of KCNK16 L114P on glucose homeostasis and confirm its association with MODY, a mouse model containing the Kcnk16 L114P mutation was generated. Heterozygous and homozygous Kcnk16 L114P mice exhibit increased neonatal lethality in the C57BL/6J and the mixed C57BL/6J:CD-1(ICR) genetic background, respectively. Lethality is likely a result of severe hyperglycemia observed in the homozygous Kcnk16 L114P neonates due to lack of glucose-stimulated insulin secretion and can be reduced with insulin treatment. Kcnk16 L114P increased whole-cell ß-cell K + currents resulting in blunted glucose-stimulated Ca 2+ entry and loss of glucose-induced Ca 2+ oscillations. Thus, adult Kcnk16 L114P mice have reduced glucose-stimulated insulin secretion and plasma insulin levels, which significantly impaired glucose homeostasis. Taken together, this study shows that the MODY-associated Kcnk16 L114P mutation disrupts glucose homeostasis in adult mice resembling a MODY phenotype and causes neonatal lethality by inhibiting islet hormone secretion during development. These data strongly suggest that TALK-1 is an islet-restricted target for the treatment of diabetes.

9.
Elife ; 122024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700926

RESUMEN

The gain-of-function mutation in the TALK-1 K+ channel (p.L114P) is associated with maturity-onset diabetes of the young (MODY). TALK-1 is a key regulator of ß-cell electrical activity and glucose-stimulated insulin secretion. The KCNK16 gene encoding TALK-1 is the most abundant and ß-cell-restricted K+ channel transcript. To investigate the impact of KCNK16 L114P on glucose homeostasis and confirm its association with MODY, a mouse model containing the Kcnk16 L114P mutation was generated. Heterozygous and homozygous Kcnk16 L114P mice exhibit increased neonatal lethality in the C57BL/6J and the CD-1 (ICR) genetic background, respectively. Lethality is likely a result of severe hyperglycemia observed in the homozygous Kcnk16 L114P neonates due to lack of glucose-stimulated insulin secretion and can be reduced with insulin treatment. Kcnk16 L114P increased whole-cell ß-cell K+ currents resulting in blunted glucose-stimulated Ca2+ entry and loss of glucose-induced Ca2+ oscillations. Thus, adult Kcnk16 L114P mice have reduced glucose-stimulated insulin secretion and plasma insulin levels, which significantly impairs glucose homeostasis. Taken together, this study shows that the MODY-associated Kcnk16 L114P mutation disrupts glucose homeostasis in adult mice resembling a MODY phenotype and causes neonatal lethality by inhibiting islet insulin secretion during development. These data suggest that TALK-1 is an islet-restricted target for the treatment for diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Glucagón , Glucosa , Secreción de Insulina , Ratones Endogámicos C57BL , Animales , Masculino , Ratones , Animales Recién Nacidos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animales de Enfermedad , Glucagón/metabolismo , Glucosa/metabolismo , Homeostasis , Insulina/metabolismo , Secreción de Insulina/efectos de los fármacos , Secreción de Insulina/genética , Islotes Pancreáticos/metabolismo , Mutación , Canales de Potasio/metabolismo , Canales de Potasio/genética
10.
Cell Rep ; 43(1): 113673, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38206814

RESUMEN

Mitochondrial Ca2+ ([Ca2+]m) homeostasis is critical for ß-cell function and becomes disrupted during the pathogenesis of diabetes. [Ca2+]m uptake is dependent on elevations in cytoplasmic Ca2+ ([Ca2+]c) and endoplasmic reticulum Ca2+ ([Ca2+]ER) release, both of which are regulated by the two-pore domain K+ channel TALK-1. Here, utilizing a novel ß-cell TALK-1-knockout (ß-TALK-1-KO) mouse model, we found that TALK-1 limited ß-cell [Ca2+]m accumulation and ATP production. However, following exposure to a high-fat diet (HFD), ATP-linked respiration, glucose-stimulated oxygen consumption rate, and glucose-stimulated insulin secretion (GSIS) were increased in control but not TALK1-KO mice. Although ß-TALK-1-KO animals showed similar GSIS before and after HFD treatment, these mice were protected from HFD-induced glucose intolerance. Collectively, these data identify that TALK-1 channel control of ß-cell function reduces [Ca2+]m and suggest that metabolic remodeling in diabetes drives dysglycemia.


Asunto(s)
Diabetes Mellitus , Células Secretoras de Insulina , Animales , Ratones , Adenosina Trifosfato/metabolismo , Calcio/metabolismo , Diabetes Mellitus/metabolismo , Dieta , Retículo Endoplásmico/metabolismo , Glucosa/metabolismo , Homeostasis , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Ratones Noqueados , Mitocondrias/metabolismo
11.
Methods Enzymol ; 690: 501-540, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37858539

RESUMEN

A variant originated from Oldenlandia affinis asparaginyl ligase, OaAEP1-C247A, has emerged as an ideal tool for protein labeling. However, its preparation was laborious and time-consuming. It is recombinantly produced as a zymogen, requiring acid activation and four chromatographic steps; despite these extensive steps, the catalytically active enzyme exhibited only moderate purity. Here, we report a novel preparation protocol, in which the cap and catalytically active core domains are produced as separate entities. The active enzyme can be obtained in two chromatographic steps, immobilized metal affinity chromatography (IMAC) and size exclusion chromatography (SEC), with no acid activation required, thereby shortening the purification procedure from at least 2 days to less than 6 h. In addition to the original C247A mutation which enhanced reaction with various amino nucleophiles, an extra D29E mutation was introduced to prevent self-cleavage, which led to noticeable improvements in homogeneity and activity of the enzyme. Indeed, the resulting "split AEP" (i.e., core domain of OaAEP1-D29E/C247A) exhibited improved catalytic efficiency constant (kcat/KM) that was found to be ∼3-fold higher than that of the original acid-activated counterpart (OaAEP1-C247A). Furthermore, we described a protein labeling protocol that couples the enzymatic reaction with an irreversible chemical transformation, thereby enabling high conversion of labeled protein with a lowered amount of reagent. Precisely, an alternative Asn-Cys-Leu (NCL) recognition sequence was used for substrate recognition. As the byproduct contains an N-terminal cysteine, it can be transformed into an inert 1,2 aminothiol motif by reacting with formylphenyl boronic acid (FPBA). Finally, the opportunities and challenges associated with the use of asparaginyl ligase are discussed.


Asunto(s)
Cisteína Endopeptidasas , Proteínas , Catálisis , Ligasas
12.
Bioconjug Chem ; 23(2): 184-95, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22175441

RESUMEN

Past work has shown that Treponema pallidum, the causative agent of syphilis, binds host fibronectin (FN). FN and other host proteins are believed to bind to rare outer membrane proteins (OMPs) of T. pallidum, and it is postulated that this interaction may facilitate cell attachment and mask antigenic targets on the surface. This research seeks to prepare a surface capable of mimicking the FN binding ability of T. pallidum in order to investigate the impact of FN binding with adsorbed Tp0483 on the host response to the surface. By understanding this interaction, it may be possible to develop more effective treatments for infection and possibly mimic the stealth properties of the bacteria. Functionalized self-assembled monolayers (SAMs) on gold were used to investigate rTp0483 and FN adsorption. Using a quartz crystal microbalance (QCM), rTp0483 adsorption and subsequent FN adsorption onto rTp0483 were determined to be higher on negatively charged carboxylate-terminated self-assembled monolayers (-COO(-) SAMs) compared to the other surfaces analyzed. Kinetic analysis of rTp0483 adsorption using surface plasmon resonance (SPR) supported this finding. Kinetic analysis of FN adsorption using SPR revealed a multistep event, where the concentration of immobilized rTp0483 plays a role in FN binding. An examination of relative QCM dissipation energy compared to the shift in frequency showed a correlation between the physical properties of adsorbed rTp0483 and SAM surface chemistry. In addition, AFM images of rTp0483 on selected SAMs illustrated a preference of rTp0483 to bind as aggregates. Adsorption on -COO(-) SAMs was more uniform across the surface, which may help further explain why FN bound more strongly. rTp0483 antibody studies suggested the involvement of amino acids 274-289 and 316-333 in binding between rTp0483 to FN, while a peptide blocking study only showed inhibition of binding with amino acids 316-333. Finally, surface adsorbed rTp0483 with FN bound significantly less anti-RGD and gelatin compared to FN adsorbed directly to -COO(-) SAMs, indicating that one or both binding regions may play a role in binding between rTp0483 and FN.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Fibronectinas/metabolismo , Membranas Artificiales , Adsorción , Sitios de Unión , Fibronectinas/sangre , Oro/química , Humanos , Cinética , Tecnicas de Microbalanza del Cristal de Cuarzo , Propiedades de Superficie
13.
Nat Commun ; 13(1): 6461, 2022 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-36309517

RESUMEN

Gi/o-coupled somatostatin or α2-adrenergic receptor activation stimulated ß-cell NKA activity, resulting in islet Ca2+ fluctuations. Furthermore, intra-islet paracrine activation of ß-cell Gi/o-GPCRs and NKAs by δ-cell somatostatin secretion slowed Ca2+ oscillations, which decreased insulin secretion. ß-cell membrane potential hyperpolarization resulting from Gi/o-GPCR activation was dependent on NKA phosphorylation by Src tyrosine kinases. Whereas, ß-cell NKA function was inhibited by cAMP-dependent PKA activity. These data reveal that NKA-mediated ß-cell membrane potential hyperpolarization is the primary and conserved mechanism for Gi/o-GPCR control of electrical excitability, Ca2+ handling, and insulin secretion.


Asunto(s)
Células Secretoras de Insulina , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Sodio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Somatostatina/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
14.
Diabetes ; 71(7): 1525-1545, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35476777

RESUMEN

Impaired pancreatic ß-cell function and insulin secretion are hallmarks of type 2 diabetes. miRNAs are short, noncoding RNAs that silence gene expression vital for the development and function of ß cells. We have previously shown that ß cell-specific deletion of the important energy sensor AMP-activated protein kinase (AMPK) results in increased miR-125b-5p levels. Nevertheless, the function of this miRNA in ß cells is unclear. We hypothesized that miR-125b-5p expression is regulated by glucose and that this miRNA mediates some of the deleterious effects of hyperglycemia in ß cells. Here, we show that islet miR-125b-5p expression is upregulated by glucose in an AMPK-dependent manner and that short-term miR-125b-5p overexpression impairs glucose-stimulated insulin secretion (GSIS) in the mouse insulinoma MIN6 cells and in human islets. An unbiased, high-throughput screen in MIN6 cells identified multiple miR-125b-5p targets, including the transporter of lysosomal hydrolases M6pr and the mitochondrial fission regulator Mtfp1. Inactivation of miR-125b-5p in the human ß-cell line EndoCß-H1 shortened mitochondria and enhanced GSIS, whereas mice overexpressing miR-125b-5p selectively in ß cells (MIR125B-Tg) were hyperglycemic and glucose intolerant. MIR125B-Tg ß cells contained enlarged lysosomal structures and had reduced insulin content and secretion. Collectively, we identify miR-125b as a glucose-controlled regulator of organelle dynamics that modulates insulin secretion.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , MicroARNs , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Glucosa/farmacología , Humanos , Células Secretoras de Insulina/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo
15.
JCI Insight ; 6(13)2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34032641

RESUMEN

Maturity-onset diabetes of the young (MODY) is a heterogeneous group of monogenic disorders of impaired pancreatic ß cell function. The mechanisms underlying MODY include ß cell KATP channel dysfunction (e.g., KCNJ11 [MODY13] or ABCC8 [MODY12] mutations); however, no other ß cell channelopathies have been associated with MODY to date. Here, we have identified a nonsynonymous coding variant in KCNK16 (NM_001135105: c.341T>C, p.Leu114Pro) segregating with MODY. KCNK16 is the most abundant and ß cell-restricted K+ channel transcript, encoding the two-pore-domain K+ channel TALK-1. Whole-cell K+ currents demonstrated a large gain of function with TALK-1 Leu114Pro compared with TALK-1 WT, due to greater single-channel activity. Glucose-stimulated membrane potential depolarization and Ca2+ influx were inhibited in mouse islets expressing TALK-1 Leu114Pro with less endoplasmic reticulum Ca2+ storage. TALK-1 Leu114Pro significantly blunted glucose-stimulated insulin secretion compared with TALK-1 WT in mouse and human islets. These data suggest that KCNK16 is a previously unreported gene for MODY.


Asunto(s)
Señalización del Calcio , Diabetes Mellitus Tipo 2 , Secreción de Insulina/fisiología , Células Secretoras de Insulina/metabolismo , Canales de Potasio de Dominio Poro en Tándem/genética , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Animales , Glucemia/metabolismo , Canalopatías/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Mutación con Ganancia de Función , Humanos , Potenciales de la Membrana/fisiología , Ratones
16.
Mol Metab ; 42: 101056, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32736089

RESUMEN

OBJECTIVE: Elevations in pancreatic α-cell intracellular Ca2+ ([Ca2+]i) lead to glucagon (GCG) secretion. Although glucose inhibits GCG secretion, how lactate and pyruvate control α-cell Ca2+ handling is unknown. Lactate enters cells through monocarboxylate transporters (MCTs) and is also produced during glycolysis by lactate dehydrogenase A (LDHA), an enzyme expressed in α-cells. As lactate activates ATP-sensitive K+ (KATP) channels in cardiomyocytes, lactate may also modulate α-cell KATP. Therefore, this study investigated how lactate signaling controls α-cell Ca2+ handling and GCG secretion. METHODS: Mouse and human islets were used in combination with confocal microscopy, electrophysiology, GCG immunoassays, and fluorescent thallium flux assays to assess α-cell Ca2+ handling, Vm, KATP currents, and GCG secretion. RESULTS: Lactate-inhibited mouse (75 ± 25%) and human (47 ± 9%) α-cell [Ca2+]i fluctuations only under low-glucose conditions (1 mM) but had no effect on ß- or δ-cells [Ca2+]i. Glyburide inhibition of KATP channels restored α-cell [Ca2+]i fluctuations in the presence of lactate. Lactate transport into α-cells via MCTs hyperpolarized mouse (14 ± 1 mV) and human (12 ± 1 mV) α-cell Vm and activated KATP channels. Interestingly, pyruvate showed a similar KATP activation profile and α-cell [Ca2+]i inhibition as lactate. Lactate-induced inhibition of α-cell [Ca2+]i influx resulted in reduced GCG secretion in mouse (62 ± 6%) and human (43 ± 13%) islets. CONCLUSIONS: These data demonstrate for the first time that lactate entry into α-cells through MCTs results in KATP activation, Vm hyperpolarization, reduced [Ca2+]i, and inhibition of GCG secretion. Thus, taken together, these data indicate that lactate either within α-cells and/or elevated in serum could serve as important modulators of α-cell function.


Asunto(s)
Células Secretoras de Glucagón/metabolismo , Glucagón/metabolismo , Ácido Láctico/metabolismo , Ácido Pirúvico/metabolismo , Animales , Calcio/metabolismo , Línea Celular , Membrana Celular/fisiología , Glucagón/fisiología , Células Secretoras de Glucagón/fisiología , Glucosa/farmacología , Humanos , Islotes Pancreáticos/metabolismo , Canales KATP/metabolismo , Ácido Láctico/farmacología , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Páncreas/metabolismo , Cultivo Primario de Células , Ácido Pirúvico/farmacología
17.
Methods Mol Biol ; 1684: 73-84, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29058185

RESUMEN

Stimulus-secretion coupling in pancreatic ß-cells requires Ca2+ influx through voltage-dependent Ca2+ channels, whose activity is controlled by the plasma membrane potential (V m). Here, we present a method of measuring fluctuations in the ß-cell V m and Ca2+ influx simultaneously, which provides valuable information about the ionic signaling mechanisms that underlie insulin secretion. This chapter describes the use of perforated patch clamp electrophysiology on cells loaded with a fluorescent intracellular Ca2+ indicator, which permits the stable recording conditions needed to monitor the V m and Ca2+ influx in ß-cells. Moreover, this chapter describes the protocols necessary for the preparation of mouse and human islet cells for the simultaneous recording of V m and Ca2+ as well as determining the specific islet cell type assessed in each experiment.


Asunto(s)
Calcio/metabolismo , Células Secretoras de Insulina/citología , Canales de Potasio/metabolismo , Animales , Células Cultivadas , Humanos , Células Secretoras de Insulina/metabolismo , Potenciales de la Membrana , Ratones , Técnicas de Placa-Clamp
18.
Mol Metab ; 9: 84-97, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29402588

RESUMEN

OBJECTIVE: Single-cell RNA sequencing studies have revealed that the type-2 diabetes associated two-pore domain K+ (K2P) channel TALK-1 is abundantly expressed in somatostatin-secreting δ-cells. However, a physiological role for TALK-1 in δ-cells remains unknown. We previously determined that in ß-cells, K+ flux through endoplasmic reticulum (ER)-localized TALK-1 channels enhances ER Ca2+ leak, modulating Ca2+ handling and insulin secretion. As glucose amplification of islet somatostatin release relies on Ca2+-induced Ca2+ release (CICR) from the δ-cell ER, we investigated whether TALK-1 modulates δ-cell Ca2+ handling and somatostatin secretion. METHODS: To define the functions of islet δ-cell TALK-1 channels, we generated control and TALK-1 channel-deficient (TALK-1 KO) mice expressing fluorescent reporters specifically in δ- and α-cells to facilitate cell type identification. Using immunofluorescence, patch clamp electrophysiology, Ca2+ imaging, and hormone secretion assays, we assessed how TALK-1 channel activity impacts δ- and α-cell function. RESULTS: TALK-1 channels are expressed in both mouse and human δ-cells, where they modulate glucose-stimulated changes in cytosolic Ca2+ and somatostatin secretion. Measurement of cytosolic Ca2+ levels in response to membrane potential depolarization revealed enhanced CICR in TALK-1 KO δ-cells that could be abolished by depleting ER Ca2+ with sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) inhibitors. Consistent with elevated somatostatin inhibitory tone, we observed significantly reduced glucagon secretion and α-cell Ca2+ oscillations in TALK-1 KO islets, and found that blockade of α-cell somatostatin signaling with a somatostatin receptor 2 (SSTR2) antagonist restored glucagon secretion in TALK-1 KO islets. CONCLUSIONS: These data indicate that TALK-1 reduces δ-cell cytosolic Ca2+ elevations and somatostatin release by limiting δ-cell CICR, modulating the intraislet paracrine signaling mechanisms that control glucagon secretion.


Asunto(s)
Señalización del Calcio , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Células Secretoras de Somatostatina/metabolismo , Somatostatina/metabolismo , Animales , Células Cultivadas , Citoplasma/metabolismo , Retículo Endoplásmico/metabolismo , Glucagón/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Canales de Potasio de Dominio Poro en Tándem/genética
19.
Sci Rep ; 8(1): 1158, 2018 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-29348619

RESUMEN

Cytokines present during low-grade inflammation contribute to ß-cell dysfunction and diabetes. Cytokine signaling disrupts ß-cell glucose-stimulated Ca2+ influx (GSCI) and endoplasmic reticulum (ER) Ca2+ ([Ca2+]ER) handling, leading to diminished glucose-stimulated insulin secretion (GSIS). However, cytokine-mediated changes in ion channel activity that alter ß-cell Ca2+ handling remain unknown. Here we investigated the role of K+ currents in cytokine-mediated ß-cell dysfunction. Kslow currents, which control the termination of intracellular Ca2+ ([Ca2+]i) oscillations, were reduced following cytokine exposure. As a consequence, [Ca2+]i and electrical oscillations were accelerated. Cytokine exposure also increased basal islet [Ca2+]i and decreased GSCI. The effect of cytokines on TALK-1 K+ currents were also examined as TALK-1 mediates Kslow by facilitating [Ca2+]ER release. Cytokine exposure decreased KCNK16 transcript abundance and associated TALK-1 protein expression, increasing [Ca2+]ER storage while maintaining 2nd phase GSCI and GSIS. This adaptive Ca2+ response was absent in TALK-1 KO islets, which exhibited decreased 2nd phase GSCI and diminished GSIS. These findings suggest that Kslow and TALK-1 currents play important roles in altered ß-cell Ca2+ handling and electrical activity during low-grade inflammation. These results also reveal that a cytokine-mediated reduction in TALK-1 serves an acute protective role in ß-cells by facilitating increased Ca2+ content to maintain GSIS.


Asunto(s)
Calcio/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Insulina/metabolismo , Interferón gamma/farmacología , Interleucina-1beta/farmacología , Canales de Potasio de Dominio Poro en Tándem/genética , Factor de Necrosis Tumoral alfa/farmacología , Adulto , Animales , Femenino , Regulación de la Expresión Génica , Glucosa/metabolismo , Humanos , Secreción de Insulina , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Transporte Iónico , Islotes Pancreáticos/citología , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Potasio/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Cultivo Primario de Células , ARN Mensajero/genética , ARN Mensajero/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Técnicas de Cultivo de Tejidos
20.
PLoS One ; 12(4): e0175069, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28403169

RESUMEN

Glucose-stimulated insulin secretion (GSIS) relies on ß-cell Ca2+ influx, which is modulated by the two-pore-domain K+ (K2P) channel, TALK-1. A gain-of-function polymorphism in KCNK16, the gene encoding TALK-1, increases risk for developing type-2 diabetes. While TALK-1 serves an important role in modulating GSIS, the regulatory mechanism(s) that control ß-cell TALK-1 channels are unknown. Therefore, we employed a membrane-specific yeast two-hybrid (MYTH) assay to identify TALK-1-interacting proteins in human islets, which will assist in determining signaling modalities that modulate TALK-1 function. Twenty-one proteins from a human islet cDNA library interacted with TALK-1. Some of these interactions increased TALK-1 activity, including intracellular osteopontin (iOPN). Intracellular OPN is highly expressed in ß-cells and is upregulated under pre-diabetic conditions to help maintain normal ß-cell function; however, the functional role of iOPN in ß-cells is poorly understood. We found that iOPN colocalized with TALK-1 in pancreatic sections and coimmunoprecipitated with human islet TALK-1 channels. As human ß-cells express two K+ channel-forming variants of TALK-1, regulation of these TALK-1 variants by iOPN was assessed. At physiological voltages iOPN activated TALK-1 transcript variant 3 channels but not TALK-1 transcript variant 2 channels. Activation of TALK-1 channels by iOPN also hyperpolarized resting membrane potential (Vm) in HEK293 cells and in primary mouse ß-cells. Intracellular OPN was also knocked down in ß-cells to test its effect on ß-cell TALK-1 channel activity. Reducing ß-cell iOPN significantly decreased TALK-1 K+ currents and increased glucose-stimulated Ca2+ influx. Importantly, iOPN did not affect the function of other K2P channels or alter Ca2+ influx into TALK-1 deficient ß-cells. These results reveal the first protein interactions with the TALK-1 channel and found that an interaction with iOPN increased ß-cell TALK-1 K+ currents. The TALK-1/iOPN complex caused Vm hyperpolarization and reduced ß-cell glucose-stimulated Ca2+ influx, which is predicted to inhibit GSIS.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Osteopontina/fisiología , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Anciano , Animales , Señalización del Calcio , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Femenino , Glucosa/fisiología , Células HEK293 , Humanos , Insulina/metabolismo , Secreción de Insulina , Potenciales de la Membrana , Ratones Noqueados , Potasio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA