RESUMEN
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) share many clinical, pathological, and genetic features, but a detailed understanding of their associated transcriptional alterations across vulnerable cortical cell types is lacking. Here, we report a high-resolution, comparative single-cell molecular atlas of the human primary motor and dorsolateral prefrontal cortices and their transcriptional alterations in sporadic and familial ALS and FTLD. By integrating transcriptional and genetic information, we identify known and previously unidentified vulnerable populations in cortical layer 5 and show that ALS- and FTLD-implicated motor and spindle neurons possess a virtually indistinguishable molecular identity. We implicate potential disease mechanisms affecting these cell types as well as non-neuronal drivers of pathogenesis. Finally, we show that neuron loss in cortical layer 5 tracks more closely with transcriptional identity rather than cellular morphology and extends beyond previously reported vulnerable cell types.
Asunto(s)
Esclerosis Amiotrófica Lateral , Degeneración Lobar Frontotemporal , Corteza Prefrontal , Animales , Humanos , Ratones , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Demencia Frontotemporal/genética , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/metabolismo , Degeneración Lobar Frontotemporal/patología , Perfilación de la Expresión Génica , Neuronas/metabolismo , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología , Análisis de Expresión Génica de una Sola CélulaRESUMEN
Tauopathies are age-associated neurodegenerative diseases whose mechanistic underpinnings remain elusive, partially due to a lack of appropriate human models. Here, we engineered human induced pluripotent stem cell (hiPSC)-derived neuronal lines to express 4R Tau and 4R Tau carrying the P301S MAPT mutation when differentiated into neurons. 4R-P301S neurons display progressive Tau inclusions upon seeding with Tau fibrils and recapitulate features of tauopathy phenotypes including shared transcriptomic signatures, autophagic body accumulation, and reduced neuronal activity. A CRISPRi screen of genes associated with Tau pathobiology identified over 500 genetic modifiers of seeding-induced Tau propagation, including retromer VPS29 and genes in the UFMylation cascade. In progressive supranuclear palsy (PSP) and Alzheimer's Disease (AD) brains, the UFMylation cascade is altered in neurofibrillary-tangle-bearing neurons. Inhibiting the UFMylation cascade in vitro and in vivo suppressed seeding-induced Tau propagation. This model provides a robust platform to identify novel therapeutic strategies for 4R tauopathy.
Asunto(s)
Células Madre Pluripotentes Inducidas , Neuronas , Tauopatías , Proteínas tau , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas tau/metabolismo , Tauopatías/metabolismo , Tauopatías/patología , Neuronas/metabolismo , Neuronas/patología , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Encéfalo/metabolismo , Encéfalo/patología , Parálisis Supranuclear Progresiva/metabolismo , Parálisis Supranuclear Progresiva/patología , Parálisis Supranuclear Progresiva/genética , Diferenciación Celular , Mutación , AutofagiaRESUMEN
Misfolding and aggregation of disease-specific proteins, resulting in the formation of filamentous cellular inclusions, is a hallmark of neurodegenerative disease with characteristic filament structures, or conformers, defining each proteinopathy. Here we show that a previously unsolved amyloid fibril composed of a 135 amino acid C-terminal fragment of TMEM106B is a common finding in distinct human neurodegenerative diseases, including cases characterized by abnormal aggregation of TDP-43, tau, or α-synuclein protein. A combination of cryoelectron microscopy and mass spectrometry was used to solve the structures of TMEM106B fibrils at a resolution of 2.7 Å from postmortem human brain tissue afflicted with frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP, n = 8), progressive supranuclear palsy (PSP, n = 2), or dementia with Lewy bodies (DLB, n = 1). The commonality of abundant amyloid fibrils composed of TMEM106B, a lysosomal/endosomal protein, to a broad range of debilitating human disorders indicates a shared fibrillization pathway that may initiate or accelerate neurodegeneration.
Asunto(s)
Demencia Frontotemporal , Proteínas de la Membrana , Proteínas del Tejido Nervioso , Enfermedades Neurodegenerativas , Amiloide , Microscopía por Crioelectrón , Proteínas de Unión al ADN/metabolismo , Demencia Frontotemporal/patología , Humanos , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismoRESUMEN
Tau aggregation into insoluble filaments is the defining pathological hallmark of tauopathies. However, it is not known what controls the formation and templated seeding of strain-specific structures associated with individual tauopathies. Here, we use cryo-electron microscopy (cryo-EM) to determine the structures of tau filaments from corticobasal degeneration (CBD) human brain tissue. Cryo-EM and mass spectrometry of tau filaments from CBD reveal that this conformer is heavily decorated with posttranslational modifications (PTMs), enabling us to map PTMs directly onto the structures. By comparing the structures and PTMs of tau filaments from CBD and Alzheimer's disease, it is found that ubiquitination of tau can mediate inter-protofilament interfaces. We propose a structure-based model in which cross-talk between PTMs influences tau filament structure, contributing to the structural diversity of tauopathy strains. Our approach establishes a framework for further elucidating the relationship between the structures of polymorphic fibrils, including their PTMs, and neurodegenerative disease.
Asunto(s)
Procesamiento Proteico-Postraduccional , Tauopatías/metabolismo , Proteínas tau/química , Anciano , Microscopía por Crioelectrón , Femenino , Humanos , Masculino , Persona de Mediana Edad , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/patología , Tauopatías/patología , Proteínas tau/metabolismoRESUMEN
Mutations in leucine-rich repeat kinase 2 (LRRK2) are a common cause of familial and sporadic Parkinson's disease (PD). Elevated LRRK2 kinase activity and neurodegeneration are linked, but the phosphosubstrate that connects LRRK2 kinase activity to neurodegeneration is not known. Here, we show that ribosomal protein s15 is a key pathogenic LRRK2 substrate in Drosophila and human neuron PD models. Phosphodeficient s15 carrying a threonine 136 to alanine substitution rescues dopamine neuron degeneration and age-related locomotor deficits in G2019S LRRK2 transgenic Drosophila and substantially reduces G2019S LRRK2-mediated neurite loss and cell death in human dopamine and cortical neurons. Remarkably, pathogenic LRRK2 stimulates both cap-dependent and cap-independent mRNA translation and induces a bulk increase in protein synthesis in Drosophila, which can be prevented by phosphodeficient T136A s15. These results reveal a novel mechanism of PD pathogenesis linked to elevated LRRK2 kinase activity and aberrant protein synthesis in vivo.
Asunto(s)
Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Ribosómicas/metabolismo , Secuencia de Aminoácidos , Animales , Drosophila melanogaster , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Datos de Secuencia Molecular , Neuronas/patología , Enfermedad de Parkinson/patología , Proteínas Ribosómicas/químicaRESUMEN
Frontotemporal lobar degeneration (FTLD) is the third most common neurodegenerative condition after Alzheimer's and Parkinson's diseases1. FTLD typically presents in 45 to 64 year olds with behavioural changes or progressive decline of language skills2. The subtype FTLD-TDP is characterized by certain clinical symptoms and pathological neuronal inclusions with TAR DNA-binding protein (TDP-43) immunoreactivity3. Here we extracted amyloid fibrils from brains of four patients representing four of the five FTLD-TDP subclasses, and determined their structures by cryo-electron microscopy. Unexpectedly, all amyloid fibrils examined were composed of a 135-residue carboxy-terminal fragment of transmembrane protein 106B (TMEM106B), a lysosomal membrane protein previously implicated as a genetic risk factor for FTLD-TDP4. In addition to TMEM106B fibrils, we detected abundant non-fibrillar aggregated TDP-43 by immunogold labelling. Our observations confirm that FTLD-TDP is associated with amyloid fibrils, and that the fibrils are formed by TMEM106B rather than TDP-43.
Asunto(s)
Amiloide , Proteínas de Unión al ADN , Degeneración Lobar Frontotemporal , Proteínas de la Membrana , Proteínas del Tejido Nervioso , Amiloide/ultraestructura , Microscopía por Crioelectrón , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/ultraestructura , Degeneración Lobar Frontotemporal/metabolismo , Degeneración Lobar Frontotemporal/patología , Humanos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/ultraestructura , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/ultraestructuraRESUMEN
A hallmark pathological feature of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is the depletion of RNA-binding protein TDP-43 from the nucleus of neurons in the brain and spinal cord1. A major function of TDP-43 is as a repressor of cryptic exon inclusion during RNA splicing2-4. Single nucleotide polymorphisms in UNC13A are among the strongest hits associated with FTD and ALS in human genome-wide association studies5,6, but how those variants increase risk for disease is unknown. Here we show that TDP-43 represses a cryptic exon-splicing event in UNC13A. Loss of TDP-43 from the nucleus in human brain, neuronal cell lines and motor neurons derived from induced pluripotent stem cells resulted in the inclusion of a cryptic exon in UNC13A mRNA and reduced UNC13A protein expression. The top variants associated with FTD or ALS risk in humans are located in the intron harbouring the cryptic exon, and we show that they increase UNC13A cryptic exon splicing in the face of TDP-43 dysfunction. Together, our data provide a direct functional link between one of the strongest genetic risk factors for FTD and ALS (UNC13A genetic variants), and loss of TDP-43 function.
Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Exones/genética , Demencia Frontotemporal/metabolismo , Estudio de Asociación del Genoma Completo , Humanos , Neuronas Motoras/patología , Proteínas del Tejido NerviosoRESUMEN
Frontotemporal dementia (FTD) is the second most common cause of early-onset dementia after Alzheimer disease (AD). Efforts in the field mainly focus on familial forms of disease (fFTDs), while studies of the genetic etiology of sporadic FTD (sFTD) have been less common. In the current work, we analyzed 4,685 sFTD cases and 15,308 controls looking for common genetic determinants for sFTD. We found a cluster of variants at the MAPT (rs199443; p = 2.5 × 10-12, OR = 1.27) and APOE (rs6857; p = 1.31 × 10-12, OR = 1.27) loci and a candidate locus on chromosome 3 (rs1009966; p = 2.41 × 10-8, OR = 1.16) in the intergenic region between RPSA and MOBP, contributing to increased risk for sFTD through effects on expression and/or splicing in brain cortex of functionally relevant in-cis genes at the MAPT and RPSA-MOBP loci. The association with the MAPT (H1c clade) and RPSA-MOBP loci may suggest common genetic pleiotropy across FTD and progressive supranuclear palsy (PSP) (MAPT and RPSA-MOBP loci) and across FTD, AD, Parkinson disease (PD), and cortico-basal degeneration (CBD) (MAPT locus). Our data also suggest population specificity of the risk signals, with MAPT and APOE loci associations mainly driven by Central/Nordic and Mediterranean Europeans, respectively. This study lays the foundations for future work aimed at further characterizing population-specific features of potential FTD-discriminant APOE haplotype(s) and the functional involvement and contribution of the MAPT H1c haplotype and RPSA-MOBP loci to pathogenesis of sporadic forms of FTD in brain cortex.
Asunto(s)
Apolipoproteínas E , Demencia Frontotemporal , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Proteínas tau , Humanos , Demencia Frontotemporal/genética , Proteínas tau/genética , Apolipoproteínas E/genética , Masculino , Femenino , Anciano , Polimorfismo de Nucleótido Simple , Sitios Genéticos , Persona de Mediana Edad , Estudios de Casos y Controles , Proteínas de la MielinaRESUMEN
[This corrects the article DOI: 10.1371/journal.pbio.3002028.].
RESUMEN
A major function of TAR DNA-binding protein-43 (TDP-43) is to repress the inclusion of cryptic exons during RNA splicing. One of these cryptic exons is in UNC13A, a genetic risk factor for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The accumulation of cryptic UNC13A in disease is heightened by the presence of a risk haplotype located within the cryptic exon itself. Here, we revealed that TDP-43 extreme N-terminus is important to repress UNC13A cryptic exon inclusion. Further, we found hnRNP L, hnRNP A1, and hnRNP A2B1 bind UNC13A RNA and repress cryptic exon inclusion, independently of TDP-43. Finally, higher levels of hnRNP L protein associate with lower burden of UNC13A cryptic RNA in ALS/FTD brains. Our findings suggest that while TDP-43 is the main repressor of UNC13A cryptic exon inclusion, other hnRNPs contribute to its regulation and may potentially function as disease modifiers.
Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Ribonucleoproteína Heterogénea-Nuclear Grupo L , Humanos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Exones/genética , Demencia Frontotemporal/genética , Ribonucleoproteínas Nucleares Heterogéneas/genética , ARN , Proteínas del Tejido Nervioso/metabolismoRESUMEN
Amyotrophic lateral sclerosis (ALS) is a fatal disease affecting upper and lower motor neurons. Microglia directly interact with motor neurons and participate in the progression of ALS. Single-cell mass cytometry (CyTOF) analysis revealed prominent expression of α5 integrin in microglia and macrophages in a superoxide dismutase-1 G93A mouse model of ALS (SOD1G93A). In postmortem tissues from ALS patients with various clinical ALS phenotypes and disease duration, α5 integrin is prominent in motor pathways of the central and peripheral nervous system and in perivascular zones associated with the blood-brain barrier. In SOD1G93A mice, administration of a monoclonal antibody against α5 integrin increased survival compared to an isotype control and improved motor function on behavioral testing. Together, these findings in mice and in humans suggest that α5 integrin is a potential therapeutic target in ALS.
Asunto(s)
Esclerosis Amiotrófica Lateral , Corteza Motora , Ratones , Humanos , Animales , Esclerosis Amiotrófica Lateral/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Integrina alfa5/metabolismo , Ratones Transgénicos , Superóxido Dismutasa/metabolismo , Macrófagos/metabolismo , Modelos Animales de EnfermedadRESUMEN
Lewy body dementia and Alzheimer's disease (AD) are leading causes of cognitive impairment, characterized by distinct but overlapping neuropathological hallmarks. Lewy body disease (LBD) is characterized by alpha-synuclein aggregates in the form of Lewy bodies as well as the deposition of extracellular amyloid plaques, with many cases also exhibiting neurofibrillary tangle (NFT) pathology. In contrast, Alzheimer's disease is characterized by amyloid plaques and neurofibrillary tangles. Both conditions often co-occur with additional neuropathological changes, such as vascular disease and TDP-43 pathology. To elucidate shared and distinct molecular signatures underlying these mixed neuropathologies, we extensively analyzed transcriptional changes in the anterior cingulate cortex, a brain region critically involved in cognitive processes. We performed bulk tissue RNAseq from the anterior cingulate cortex and determined differentially expressed genes (q-value < 0.05) in control (n = 81), Lewy body disease (n = 436), Alzheimer's disease (n = 53), and pathological amyloid cases consisting of amyloid pathology with minimal or no tau pathology (n = 39). We used gene set enrichment and weighted gene correlation network analysis (WGCNA) to understand the pathways associated with each neuropathologically defined group. Lewy body disease cases had strong up-regulation of inflammatory pathways and down-regulation of metabolic pathways. The Lewy body disease cases were further subdivided into either high Thal amyloid, Braak NFT, or low pathological burden cohorts. Compared to the control cases, the Lewy body disease cohorts consistently showed up-regulation for genes involved in protein folding and cytokine immune response, as well as down-regulation of fatty acid metabolism. Surprisingly, concomitant tau pathology within the Lewy body disease cases resulted in no additional changes. Some core inflammatory pathways were shared between Alzheimer's disease and Lewy body disease but with numerous disease-specific changes. Direct comparison of Lewy body disease cohorts versus Alzheimer's disease cases revealed strong enrichment of synaptic signaling, behavior, and neuronal system pathways. Females had a stronger response overall in both Lewy body and Alzheimer's disease, with several sex-specific changes. Overall, the results identify genes commonly and uniquely dysregulated in neuropathologically defined Lewy body disease and Alzheimer's disease cases, shedding light on shared and distinct molecular pathways. Additionally, the study underscores the importance of considering sex-specific changes in understanding the complex transcriptional landscape of these neurodegenerative diseases.
RESUMEN
There is a longstanding ambiguity regarding the clinical diagnosis of dementia syndromes predominantly targeting executive functions versus behaviour and personality. This is due to an incomplete understanding of the macro-scale anatomy underlying these symptomatologies, a partial overlap in clinical features and the fact that both phenotypes can emerge from the same pathology and vice versa. We collected data from a patient cohort of which 52 had dysexecutive Alzheimer's disease, 30 had behavioural variant frontotemporal dementia (bvFTD), seven met clinical criteria for bvFTD but had Alzheimer's disease pathology (behavioural Alzheimer's disease) and 28 had amnestic Alzheimer's disease. We first assessed group-wise differences in clinical and cognitive features and patterns of fluorodeoxyglucose (FDG) PET hypometabolism. We then performed a spectral decomposition of covariance between FDG-PET images to yield latent patterns of relative hypometabolism unbiased by diagnostic classification, which are referred to as 'eigenbrains'. These eigenbrains were subsequently linked to clinical and cognitive data and meta-analytic topics from a large external database of neuroimaging studies reflecting a wide range of mental functions. Finally, we performed a data-driven exploratory linear discriminant analysis to perform eigenbrain-based multiclass diagnostic predictions. Dysexecutive Alzheimer's disease and bvFTD patients were the youngest at symptom onset, followed by behavioural Alzheimer's disease, then amnestic Alzheimer's disease. Dysexecutive Alzheimer's disease patients had worse cognitive performance on nearly all cognitive domains compared with other groups, except verbal fluency which was equally impaired in dysexecutive Alzheimer's disease and bvFTD. Hypometabolism was observed in heteromodal cortices in dysexecutive Alzheimer's disease, temporo-parietal areas in amnestic Alzheimer's disease and frontotemporal areas in bvFTD and behavioural Alzheimer's disease. The unbiased spectral decomposition analysis revealed that relative hypometabolism in heteromodal cortices was associated with worse dysexecutive symptomatology and a lower likelihood of presenting with behaviour/personality problems, whereas relative hypometabolism in frontotemporal areas was associated with a higher likelihood of presenting with behaviour/personality problems but did not correlate with most cognitive measures. The linear discriminant analysis yielded an accuracy of 82.1% in predicting diagnostic category and did not misclassify any dysexecutive Alzheimer's disease patient for behavioural Alzheimer's disease and vice versa. Our results strongly suggest a double dissociation in that distinct macro-scale underpinnings underlie predominant dysexecutive versus personality/behavioural symptomatology in dementia syndromes. This has important implications for the implementation of criteria to diagnose and distinguish these diseases and supports the use of data-driven techniques to inform the classification of neurodegenerative diseases.
Asunto(s)
Enfermedad de Alzheimer , Demencia Frontotemporal , Humanos , Enfermedad de Alzheimer/patología , Fluorodesoxiglucosa F18 , Demencia Frontotemporal/patología , Función Ejecutiva , Corteza Cerebral/patología , Pruebas NeuropsicológicasRESUMEN
AIMS: Recent advances in artificial intelligence, particularly with large language models like GPT-4Vision (GPT-4V)-a derivative feature of ChatGPT-have expanded the potential for medical image interpretation. This study evaluates the accuracy of GPT-4V in image classification tasks of histopathological images and compares its performance with a traditional convolutional neural network (CNN). METHODS: We utilised 1520 images, including haematoxylin and eosin staining and tau immunohistochemistry, from patients with various neurodegenerative diseases, such as Alzheimer's disease (AD), progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD). We assessed GPT-4V's performance using multi-step prompts to determine how textual context influences image interpretation. We also employed few-shot learning to enhance improvements in GPT-4V's diagnostic performance in classifying three specific tau lesions-astrocytic plaques, neuritic plaques and tufted astrocytes-and compared the outcomes with the CNN model YOLOv8. RESULTS: GPT-4V accurately recognised staining techniques and tissue origin but struggled with specific lesion identification. The interpretation of images was notably influenced by the provided textual context, which sometimes led to diagnostic inaccuracies. For instance, when presented with images of the motor cortex, the diagnosis shifted inappropriately from AD to CBD or PSP. However, few-shot learning markedly improved GPT-4V's diagnostic capabilities, enhancing accuracy from 40% in zero-shot learning to 90% with 20-shot learning, matching the performance of YOLOv8, which required 100-shot learning to achieve the same accuracy. CONCLUSIONS: Although GPT-4V faces challenges in independently interpreting histopathological images, few-shot learning significantly improves its performance. This approach is especially promising for neuropathology, where acquiring extensive labelled datasets is often challenging.
Asunto(s)
Redes Neurales de la Computación , Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/patología , Interpretación de Imagen Asistida por Computador/métodos , Enfermedad de Alzheimer/patologíaRESUMEN
OBJECTIVE: Recent evidence supports a link between increased TDP-43 burden and the presence of an APOE4 gene allele in Alzheimer's disease (AD); however, it is difficult to conclude the direct effect of APOE on TDP-43 pathology due to the presence of mixed AD pathologies. The goal of this study is to address how APOE isoforms impact TDP-43 pathology and related neurodegeneration in the absence of typical AD pathologies. METHODS: We overexpressed human TDP-43 via viral transduction in humanized APOE2, APOE3, APOE4 mice, and murine Apoe-knockout (Apoe-KO) mice. Behavior tests were performed across ages. Animals were harvested at 11 months of age and TDP-43 overexpression-related neurodegeneration and gliosis were assessed. To further address the human relevance, we analyzed the association of APOE with TDP-43 pathology in 160 postmortem brains from autopsy-confirmed amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with motor neuron disease (FTLD-MND) in the Mayo Clinic Brain Bank. RESULTS: We found that TDP-43 overexpression induced motor function deficits, neuronal loss, and gliosis in the motor cortex, especially in APOE2 mice, with much milder or absent effects in APOE3, APOE4, or Apoe-KO mice. In the motor cortex of the ALS and FTLD-MND postmortem human brains, we found that the APOE2 allele was associated with more severe TDP-43-positive dystrophic neurites. INTERPRETATION: Our data suggest a genotype-specific effect of APOE on TDP-43 proteinopathy and neurodegeneration in the absence of AD pathology, with the strongest association seen with APOE2. ANN NEUROL 2023;93:830-843.
Asunto(s)
Enfermedad de Alzheimer , Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Enfermedad de la Neurona Motora , Humanos , Animales , Ratones , Esclerosis Amiotrófica Lateral/genética , Apolipoproteína E2/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Apolipoproteína E4/genética , Apolipoproteína E3 , Gliosis/genética , Proteínas de Unión al ADN/genética , Apolipoproteínas E/genética , Degeneración Lobar Frontotemporal/patologíaRESUMEN
The most prominent genetic cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) is a repeat expansion in the gene C9orf72. Importantly, the transcriptomic consequences of the C9orf72 repeat expansion remain largely unclear. Here, we used short-read RNA sequencing (RNAseq) to profile the cerebellar transcriptome, detecting alterations in patients with a C9orf72 repeat expansion. We focused on the cerebellum, since key C9orf72-related pathologies are abundant in this neuroanatomical region, yet TDP-43 pathology and neuronal loss are minimal. Consistent with previous work, we showed a reduction in the expression of the C9orf72 gene and an elevation in homeobox genes, when comparing patients with the expansion to both patients without the C9orf72 repeat expansion and control subjects. Interestingly, we identified more than 1000 alternative splicing events, including 4 in genes previously associated with ALS and/or FTLD. We also found an increase of cryptic splicing in C9orf72 patients compared to patients without the expansion and controls. Furthermore, we demonstrated that the expression level of select RNA-binding proteins is associated with cryptic splice junction inclusion. Overall, this study explores the presence of widespread transcriptomic changes in the cerebellum, a region not confounded by severe neurodegeneration, in post-mortem tissue from C9orf72 patients.
Asunto(s)
Esclerosis Amiotrófica Lateral , Proteína C9orf72 , Cerebelo , Degeneración Lobar Frontotemporal , Humanos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Cerebelo/patología , Expansión de las Repeticiones de ADN/genética , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/metabolismo , Degeneración Lobar Frontotemporal/patología , Perfilación de la Expresión Génica , TranscriptomaRESUMEN
The risk of developing Alzheimer's disease (AD) significantly increases in individuals carrying the APOEε4 allele. Elderly cognitively healthy individuals with APOEε4 also exist, suggesting the presence of cellular mechanisms that counteract the pathological effects of APOEε4; however, these mechanisms are unknown. We hypothesized that APOEε4 carriers without dementia might carry genetic variations that could protect them from developing APOEε4-mediated AD pathology. To test this, we leveraged whole-genome sequencing (WGS) data in the National Institute on Aging Alzheimer's Disease Family Based Study (NIA-AD FBS), Washington Heights/Inwood Columbia Aging Project (WHICAP), and Estudio Familiar de Influencia Genetica en Alzheimer (EFIGA) cohorts and identified potentially protective variants segregating exclusively among unaffected APOEε4 carriers. In homozygous unaffected carriers above 70 years old, we identified 510 rare coding variants. Pathway analysis of the genes harboring these variants showed significant enrichment in extracellular matrix (ECM)-related processes, suggesting protective effects of functional modifications in ECM proteins. We prioritized two genes that were highly represented in the ECM-related gene ontology terms, (FN1) and collagen type VI alpha 2 chain (COL6A2) and are known to be expressed at the blood-brain barrier (BBB), for postmortem validation and in vivo functional studies. An independent analysis in a large cohort of 7185 APOEε4 homozygous carriers found that rs140926439 variant in FN1 was protective of AD (OR = 0.29; 95% CI [0.11, 0.78], P = 0.014) and delayed age at onset of disease by 3.37 years (95% CI [0.42, 6.32], P = 0.025). The FN1 and COL6A2 protein levels were increased at the BBB in APOEε4 carriers with AD. Brain expression of cognitively unaffected homozygous APOEε4 carriers had significantly lower FN1 deposition and less reactive gliosis compared to homozygous APOEε4 carriers with AD, suggesting that FN1 might be a downstream driver of APOEε4-mediated AD-related pathology and cognitive decline. To validate our findings, we used zebrafish models with loss-of-function (LOF) mutations in fn1b-the ortholog for human FN1. We found that fibronectin LOF reduced gliosis, enhanced gliovascular remodeling, and potentiated the microglial response, suggesting that pathological accumulation of FN1 could impair toxic protein clearance, which is ameliorated with FN1 LOF. Our study suggests that vascular deposition of FN1 is related to the pathogenicity of APOEε4, and LOF variants in FN1 may reduce APOEε4-related AD risk, providing novel clues to potential therapeutic interventions targeting the ECM to mitigate AD risk.
Asunto(s)
Enfermedad de Alzheimer , Fibronectinas , Anciano , Animales , Humanos , Enfermedad de Alzheimer/genética , Fibronectinas/genética , Variación Genética/genética , Gliosis , Pez CebraRESUMEN
Genetic variants and epigenetic features both contribute to the risk of Alzheimer's disease (AD). We studied the AD association of CpG-related single nucleotide polymorphisms (CGS), which act as a hub of both the genetic and epigenetic effects, in Caribbean Hispanics (CH) and generalized the findings to Non-Hispanic Whites (NHW). First, we conducted a genome-wide, sliding-window-based association with AD, in 7,155 CH and 1,283 NHW participants. Next, using data from the dorsolateral prefrontal cortex in 179 CH brains, we tested the cis- and trans-effects of AD-associated CGS on brain DNA methylation to mRNA expression. For the genes with significant cis- and trans-effects, we investigated their enriched pathways. We identified six genetic loci in CH with CGS dosage associated with AD at genome-wide significance levels: ADAM20 (Score = 55.19, P = 4.06 × 10-8), the intergenic region between VRTN and SYNDIG1L (Score = - 37.67, P = 2.25 × 10-9), SPG7 (16q24.3) (Score = 40.51, P = 2.23 × 10-8), PVRL2 (Score = 125.86, P = 1.64 × 10-9), TOMM40 (Score = - 18.58, P = 4.61 × 10-8), and APOE (Score = 75.12, P = 7.26 × 10-26). CGSes in PVRL2 and APOE were also significant in NHW. Except for ADAM20, CGSes in the other five loci were associated with CH brain methylation levels (mQTLs) and CGSes in SPG7, PVRL2, and APOE were also mQTLs in NHW. Except for SYNDIG1L (P = 0.08), brain methylation levels in the other five loci affected downstream mRNA expression in CH (P < 0.05), and methylation at VRTN and TOMM40 were also associated with mRNA expression in NHW. Gene expression in these six loci were also regulated by CpG sites in genes that were enriched in the neuron projection and glutamatergic synapse pathways (FDR < 0.05). DNA methylation at all six loci and mRNA expression of SYNDIG1 and TOMM40 were significantly associated with Braak Stage in CH. In summary, we identified six CpG-related genetic loci associated with AD in CH, harboring both genetic and epigenetic risks. However, their downstream effects on mRNA expression maybe ethnic specific and different from NHW.
Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Pueblos Caribeños , Epigénesis Genética , Predisposición Genética a la Enfermedad , Blanco , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/etnología , Autopsia , Encéfalo/patología , Metilación de ADN , Estudio de Asociación del Genoma Completo , Pueblos Caribeños/genética , Blanco/genéticaRESUMEN
Rare and common GBA variants are risk factors for both Parkinson's disease (PD) and dementia with Lewy bodies (DLB). However, the degree to which GBA variants are associated with neuropathological features in Lewy body disease (LBD) is unknown. Herein, we assessed 943 LBD cases and examined associations of 15 different neuropathological outcomes with common and rare GBA variants. Neuropathological outcomes included LBD subtype, presence of a high likelihood of clinical DLB (per consensus guidelines), LB counts in five cortical regions, tyrosine hydroxylase immunoreactivity in the dorsolateral and ventromedial putamen, ventrolateral substantia nigra neuronal loss, Braak neurofibrillary tangle (NFT) stage, Thal amyloid phase, phospho-ubiquitin (pS65-Ub) level, TDP-43 pathology, and vascular disease. Sequencing of GBA exons revealed a total of 42 different variants (4 common [MAF > 0.5%], 38 rare [MAF < 0.5%]) in our series, and 165 cases (17.5%) had a copy of the minor allele for ≥ 1 variant. In analysis of common variants, p.L483P was associated with a lower Braak NFT stage (OR = 0.10, P < 0.001). In gene-burden analysis, presence of the minor allele for any GBA variant was associated with increased odds of a high likelihood of DLB (OR = 2.00, P < 0.001), a lower Braak NFT stage (OR = 0.48, P < 0.001), a lower Thal amyloid phase (OR = 0.55, P < 0.001), and a lower pS65-Ub level (ß: -0.37, P < 0.001). Subgroup analysis revealed that GBA variants were most common in LBD cases with a combination of transitional/diffuse LBD and Braak NFT stage 0-II or Thal amyloid phase 0-1, and correspondingly that the aforementioned associations of GBA gene-burden with a decreased Braak NFT stage and Thal amyloid phase were observed only in transitional or diffuse LBD cases. Our results indicate that in LBD, GBA variants occur most frequently in cases with greater LB pathology and low AD pathology, further informing disease-risk associations of GBA in PD, PD dementia, and DLB.