Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Death Dis ; 10(2): 45, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30718504

RESUMEN

The blood-brain barrier (BBB) has a major role in maintaining brain homeostasis through the specialized function of brain endothelial cells (BECs). Inflammation of the BECs and loss of their neuroprotective properties is associated with several neurological disorders, including the chronic neuro-inflammatory disorder multiple sclerosis (MS). Yet, the underlying mechanisms of a defective BBB in MS remain largely unknown. Endothelial to mesenchymal transition (EndoMT) is a pathophysiological process in which endothelial cells lose their specialized function and de-differentiate into mesenchymal cells. This transition is characterized by an increase in EndoMT-related transcription factors (TFs), a downregulation of brain endothelial markers, and an upregulation of mesenchymal markers accompanied by morphological changes associated with cytoskeleton reorganization. Here, we postulate that EndoMT drives BEC de-differentiation, mediates inflammation-induced human BECs dysfunction, and may play a role in MS pathophysiology. We provide evidence that stimulation of human BECs with transforming growth factor (TGF)-ß1 and interleukin (IL)-1ß promotes EndoMT, a process in which the TF SNAI1, a master regulator of EndoMT, plays a crucial role. We demonstrate the involvement of TGF-ß activated kinase 1 (TAK1) in EndoMT induction in BECs. Finally, immunohistochemical analysis revealed EndoMT-associated alterations in the brain vasculature of human post-mortem MS brain tissues. Taken together, our novel findings provide a better understanding of the molecular mechanisms underlying BECs dysfunction during MS pathology and can be used to develop new potential therapeutic strategies to restore BBB function.


Asunto(s)
Encéfalo/fisiopatología , Inflamación/complicaciones , Esclerosis Múltiple/genética , Esclerosis Múltiple/fisiopatología , Células Cultivadas , Células Endoteliales/metabolismo , Transición Epitelial-Mesenquimal , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA