Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 108(1): 349, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809317

RESUMEN

Galacto-oligosaccharides (GOS) are prebiotic compounds that are mainly used in infant formula to mimic bifidogenic effects of mother's milk. They are synthesized by ß-galactosidase enzymes in a trans-glycosylation reaction with lactose. Many ß-galactosidase enzymes from different sources have been studied, resulting in varying GOS product compositions and yields. The in vivo role of these enzymes is in lactose hydrolysis. Therefore, the best GOS yields were achieved at high lactose concentrations up to 60%wt, which require a relatively high temperature to dissolve. Some thermostable ß-glucosidase enzymes from thermophilic bacteria are also capable of using lactose or para nitrophenyl-galactose as a substrate. Here, we describe the use of the ß-glucosidase BglA from Thermotoga maritima for synthesis of oligosaccharides derived from lactose and cellobiose and their detailed structural characterization. Also, the BglA enzyme kinetics and yields were determined, showing highest productivity at higher lactose and cellobiose concentrations. The BglA trans-glycosylation/hydrolysis ratio was higher with 57%wt lactose than with a nearly saturated cellobiose (20%wt) solution. The yield of GOS was very high, reaching 72.1%wt GOS from lactose. Structural elucidation of the products showed mainly ß(1 → 3) and ß(1 → 6) elongating activity, but also some ß(1 → 4) elongation was observed. The ß-glucosidase BglA from T. maritima was shown to be a very versatile enzyme, producing high yields of oligosaccharides, particularly GOS from lactose. KEY POINTS: • ß-Glucosidase of Thermotoga maritima synthesizes GOS from lactose at very high yield. • Thermotoga maritima ß-glucosidase has high activity and high thermostability. • Thermotoga maritima ß-glucosidase GOS contains mainly (ß1-3) and (ß1-6) linkages.


Asunto(s)
Celobiosa , Lactosa , Oligosacáridos , Thermotoga maritima , beta-Glucosidasa , Thermotoga maritima/enzimología , Thermotoga maritima/genética , Lactosa/metabolismo , Celobiosa/metabolismo , beta-Glucosidasa/metabolismo , beta-Glucosidasa/genética , beta-Glucosidasa/química , Cinética , Oligosacáridos/metabolismo , Glicosilación , Hidrólisis , Temperatura , Estabilidad de Enzimas
2.
Crit Rev Food Sci Nutr ; : 1-14, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37051937

RESUMEN

Modification of starch by transglycosylases from glycoside hydrolase families has attracted much attention recently; these enzymes can produce starch derivatives with novel properties, i.e. processability and functionality, employing highly efficient and safe methods. Starch-active transglycosylases cleave starches and transfer linear fragments to acceptors introducing α-1,4 and/or linear/branched α-1,6 glucosidic linkages, resulting in starch derivatives with excellent properties such as complexing and resistance to digestion characteristics, and also may be endowed with new properties such as thermo-reversible gel formation. This review summarizes the effects of variations in glycosidic linkage composition on structure and properties of modified starches. Starch-active transglycosylases are classified into 4 groups that form compounds: (1) in cyclic with α-1,4 glucosidic linkages, (2) with linear chains of α-1,4 glucosidic linkages, (3) with branched α-1,6 glucosidic linkages, and (4) with linear chains of α-1,6 glucosidic linkages. We discuss potential processability and functionality of starch derivatives with different linkage combinations and structures. The changes in properties caused by rearrangements of glycosidic linkages provide guidance for design of starch derivatives with desired structures and properties, which promotes the development of new starch products and starch processing for the food industry.

3.
Crit Rev Food Sci Nutr ; 63(21): 5247-5267, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34907830

RESUMEN

Polyphenols exhibit various beneficial biological activities and represent very promising candidates as active compounds for food industry. However, the low solubility, poor stability and low bioavailability of polyphenols have severely limited their industrial applications. Enzymatic glycosylation is an effective way to improve the physicochemical properties of polyphenols. As efficient transglucosidases, glycoside hydrolase family 70 (GH70) glucansucrases naturally catalyze the synthesis of polysaccharides and oligosaccharides from sucrose. Notably, GH70 glucansucrases show broad acceptor substrate promiscuity and catalyze the glucosylation of a wide range of non-carbohydrate hydroxyl group-containing molecules, including benzenediol, phenolic acids, flavonoids and steviol glycosides. Branching sucrase enzymes, a newly established subfamily of GH70, are shown to possess a broader acceptor substrate binding pocket that acts efficiently for glucosylation of larger size polyphenols such as flavonoids. Here we present a comprehensive review of glucosylation of polyphenols using GH70 glucansucrase and branching sucrases. Their catalytic efficiency, the regioselectivity of glucosylation and the structure of generated products are described for these reactions. Moreover, enzyme engineering is effective for improving their catalytic efficiency and product specificity. The combined information provides novel insights on the glucosylation of polyphenols by GH70 glucansucrases and branching sucrases, and may promote their applications.


Asunto(s)
Glicósido Hidrolasas , Polifenoles , Sacarasa/química , Sacarasa/metabolismo , Flavonoides
4.
Appl Environ Microbiol ; 88(16): e0103122, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35924943

RESUMEN

Branching sucrases, a subfamily of Glycoside Hydrolase family (GH70), display transglycosidase activity using sucrose as donor substrate to catalyze glucosylation reaction in the presence of suitable acceptor substrates. In this study, the (α1→3) branching sucrase GtfZ-CD2 from Apilactobacillus kunkeei DSM 12361 was demonstrated to glucosylate benzenediol compounds (i.e., catechol, resorcinol, and hydroquinone) to form monoglucoside and diglucoside products. The production and yield of catechol glucosylated products were significantly higher than that of resorcinol and hydroquinone, revealing a preference for adjacent aromatic hydroxyl groups in glucosylation. Amino residues around acceptor substrate binding subsite +1 were targeted for semirational mutagenesis, yielding GtfZ-CD2 variants with improved resorcinol and hydroquinone glucosylation. Mutant L1560Y with improved hydroquinone mono-glucosylated product synthesis allowed enzymatic conversion of hydroquinone into α-arbutin. This study thus revealed the high potential of GH70 branching sucrases for glucosylating noncarbohydrate molecules. IMPORTANCE Glycosylation represents one of the most important ways to expand the diversity of natural products and improve their physico-chemical properties. Aromatic polyphenol compounds widely found in plants are reported to exhibit various remarkable biological activities; however, they generally suffer from low solubility and stability, which can be improved by glycosylation. Our present study on the glucosylation of benzenediol compounds by GH70 branching sucrase GtfZ-CD2 and its semirational engineering to improve the glucosylation efficiency provides insight into the mechanism of acceptor substrates binding and its glucosylation selectivity. The results demonstrate the potential of using branching sucrase as an effective enzymatic glucosylation tool.


Asunto(s)
Hidroquinonas , Sacarasa , Catecoles , Lactobacillus , Resorcinoles , Sacarasa/química
5.
J Dairy Sci ; 104(4): 5056-5068, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33551170

RESUMEN

In bovine milk serum, the whey proteins with the highest N-glycan contribution are lactoferrin, IgG, and glycosylation-dependent cellular adhesion molecule 1 (GlyCAM-1); GlyCAM-1 is the dominant N-linked glycoprotein in bovine whey protein products. Whey proteins are base ingredients in a range of food products, including infant formulas. Glycan monosaccharide composition and variation thereof may affect functionality, such as the interaction of glycans with the immune system via recognition receptors. It is therefore highly relevant to understand whether and how the glycosylation of whey proteins (and their functionality) can be modulated. We recently showed that the glycoprofile of GlyCAM-1 varies between cows and during early lactation, whereas the glycoprofile of lactoferrin was highly constant. In the current study, we evaluated intercow differences and the effects of macronutrient supply on the N-linked glycosylation profiles of the major whey proteins in milk samples of Holstein-Friesian cows. Overall, approximately 60% of the N-glycan pool in milk protein was sialylated, or fucosylated, or both; GlyCAM-1 contributed approximately 78% of the total number of glycans in the overall whey protein N-linked glycan pool. The degree of fucosylation ranged from 44.8 to 73.3% between cows, and this variation was mainly attributed to the glycans of GlyCAM-1. Dietary supplementation with fat or protein did not influence the overall milk serum glycoprofile. Postruminal infusion of palm olein, glucose, and essential AA resulted in shifts in the degree of GlyCAM-1 fucosylation within individual cows, ranging in some cases from 50 to 71% difference in degree of fucosylation, regardless of treatment. Overall, these data demonstrate that the glycosylation, and particularly fucosylation, of GlyCAM-1 was variable, although these shifts appear to be related more to individual cow variation than to nutrient supply. To our knowledge, this is the first report of variation in glycosylation of a milk glycoprotein in mature, noncolostral milk. The functional implications of variable GlyCAM-1 fucosylation remain to be investigated.


Asunto(s)
Leche , Mucinas , Animales , Bovinos , Femenino , Glicosilación , Proteína de Suero de Leche
6.
Crit Rev Food Sci Nutr ; 60(1): 123-146, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-30525940

RESUMEN

The glycemic carbohydrates we consume are currently viewed in an unfavorable light in both the consumer and medical research worlds. In significant part, these carbohydrates, mainly starch and sucrose, are looked upon negatively due to their rapid and abrupt glucose delivery to the body which causes a high glycemic response. However, dietary carbohydrates which are digested and release glucose in a slow manner are recognized as providing health benefits. Slow digestion of glycemic carbohydrates can be caused by several factors, including food matrix effect which impedes α-amylase access to substrate, or partial inhibition by plant secondary metabolites such as phenolic compounds. Differences in digestion rate of these carbohydrates may also be due to their specific structures (e.g. variations in degree of branching and/or glycosidic linkages present). In recent years, much has been learned about the synthesis and digestion kinetics of novel α-glucans (i.e. small oligosaccharides or larger polysaccharides based on glucose units linked in different positions by α-bonds). It is the synthesis and digestion of such structures that is the subject of this review.


Asunto(s)
Digestión , Tracto Gastrointestinal/metabolismo , Glucanos/farmacología , Glucosa/metabolismo , Carbohidratos de la Dieta/metabolismo , Humanos , Almidón
7.
J Struct Biol ; 205(1): 1-10, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30553858

RESUMEN

Galactooligosaccharides (GOS) are prebiotic compounds synthesized from lactose using bacterial enzymes and are known to stimulate growth of beneficial bifidobacteria in the human colon. Bacteroides thetaiotaomicron is a prominent human colon commensal bacterial species that hydrolyzes GOS using an extracellular Glycosyl Hydrolase (GH) family GH53 endo-galactanase enzyme (BTGH53), releasing galactose-based products for growth. Here we dissect the molecular basis for GOS activity of this B. thetaiotaomicron GH53 endo-galactanase. Elucidation of its X-ray crystal structure revealed that BTGH53 has a relatively open active site cleft which was not observed with the bacterial enzyme from Bacillus licheniformis (BLGAL). BTGH53 acted on GOS with degree of polymerization ≤3 and therefore more closely resembles activity of fungal GH53 enzymes (e.g. Aspergillus aculeatus AAGAL and Meripileus giganteus MGGAL). Probiotic lactobacilli that lack galactan utilization systems constitute a group of bacteria with relevance for a healthy (infant) gut. The strains tested were unable to use GOS ≥ DP3. However, they completely consumed GOS in the presence of BTGH53, resulting in clear stimulation of their extent of growth. The extracellular BTGH53 enzyme thus may play an important role in carbohydrate metabolism in complex microbial environments such as the human colon. It also may find application for the development of synergistic synbiotics.


Asunto(s)
Bacteroides thetaiotaomicron/enzimología , Glicósido Hidrolasas/química , Prebióticos , Galactosa/química , Glicósido Hidrolasas/fisiología , Humanos , Oligosacáridos/química
8.
Appl Microbiol Biotechnol ; 103(2): 707-718, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30406451

RESUMEN

Previously we structurally characterized five glucosylated lactose derivatives (F1-F5) with a degree of polymerization (DP) of 3-4 (GL34), products of Lactobacillus reuteri glucansucrases, with lactose and sucrose as substrates. Here, we show that these GL34 compounds are largely resistant to the hydrolytic activities of common carbohydrate-degrading enzymes. Also, the ability of single strains of gut bacteria, bifidobacteria, lactobacilli, and commensal bacteria, to ferment the GL34 compounds was studied. Bifidobacteria clearly grew better on the GL34 mixture than lactobacilli and commensal bacteria. Lactobacilli and the commensal bacteria Escherichia coli Nissle and Bacteroides thetaiotaomicron only degraded the F2 compound α-D-Glcp-(1 → 2)-[ß-D-Galp-(1 → 4)-]D-Glcp, constituting around 30% w/w of GL34. Bifidobacteria digested more than one compound from the GL34 mixture, varying with the specific strain tested. Bifidobacterium adolescentis was most effective, completely degrading four of the five GL34 compounds, leaving only one minor constituent. GL34 thus represents a novel oligosaccharide mixture with (potential) synbiotic properties towards B. adolescentis, synthesized from cheap and abundantly available lactose and sucrose.


Asunto(s)
Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Tracto Gastrointestinal/microbiología , Lactosa/análogos & derivados , Lactosa/metabolismo , Polisacáridos/metabolismo , Biotransformación , Fermentación , Glicosilación
9.
Appl Environ Microbiol ; 84(21)2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30171006

RESUMEN

Probiotic gut bacteria employ specific metabolic pathways to degrade dietary carbohydrates beyond the capabilities of their human host. Here, we report how individual commercial probiotic strains degrade prebiotic (inulin type) fructans. First, a structural analysis of commercial fructose oligosaccharide-inulin samples was performed. These ß-(2-1)-fructans differ in termination by either glucose (GF) or fructose (FF) residues, with a broad variation in the degrees of polymerization (DPs). The growth of individual probiotic bacteria on short-chain inulin (sc-inulin) (Frutafit CLR), a ß-(2-1)-fructan (DP 2 to DP 40), was studied. Lactobacillus salivarius W57 and other bacteria grew relatively poorly on sc-inulin, with only fractions of DP 3 and DP 5 utilized, reflecting uptake via specific transport systems followed by intracellular metabolism. Lactobacillus paracasei subsp. paracasei W20 completely used all sc-inulin components, employing an extracellular exo-inulinase enzyme (glycoside hydrolase family GH32 [LpGH32], also found in other strains of this species); the purified enzyme converted high-DP compounds into fructose, sucrose, 1-kestose, and F2 (inulobiose). The cocultivation of L. salivarius W57 and L. paracasei W20 on sc-inulin resulted in cross-feeding of the former by the latter, supported by this extracellular exo-inulinase. The extent of cross-feeding depended on the type of fructan, i.e., the GF type (clearly stimulating) versus the FF type (relatively low stimulus), and on fructan chain length, since relatively low-DP ß-(2-1)-fructans contain a relatively high content of GF-type molecules, thus resulting in higher concentrations of GF-type DP 2 to DP 3 degradation products. The results provide an example of how in vivo cross-feeding on prebiotic ß-(2-1)-fructans may occur among probiotic lactobacilli.IMPORTANCE The human gut microbial community is associated strongly with host physiology and human diseases. This observation has prompted research on pre- and probiotics, two concepts enabling specific changes in the composition of the human gut microbiome that result in beneficial effects for the host. Here, we show how fructooligosaccharide-inulin prebiotics are fermented by commercial probiotic bacterial strains involving specific sets of enzymes and transporters. Cross-feeding strains such as Lactobacillus paracasei W20 may thus act as keystone strains in the degradation of prebiotic inulin in the human gut, and this strain-exo-inulinase combination may be used in commercial Lactobacillus-inulin synbiotics.


Asunto(s)
Proteínas Bacterianas/metabolismo , Glicósido Hidrolasas/metabolismo , Inulina/metabolismo , Lacticaseibacillus paracasei/enzimología , Prebióticos/análisis , Probióticos/metabolismo , Fermentación , Lacticaseibacillus paracasei/genética , Lacticaseibacillus paracasei/metabolismo , Oligosacáridos/metabolismo , Probióticos/análisis
10.
Appl Microbiol Biotechnol ; 102(18): 7935-7950, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30043269

RESUMEN

The fructophilic bacterium Lactobacillus kunkeei has promising applications as probiotics promoting the health of both honey bees and humans. Here, we report the synthesis of a highly branched dextran by L. kunkeei DSM 12361 and biochemical characterization of a GH70 enzyme (GtfZ). Sequence analysis revealed that GtfZ harbors two separate catalytic cores (CD1 and CD2), predicted to have glucansucrase and branching sucrase specificity, respectively. GtfZ-CD1 was not characterized biochemically due to its unsuccessful expression. With only sucrose as substrate, GtfZ-CD2 was found to mainly catalyze sucrose hydrolysis and leucrose synthesis. When dextran was available as acceptor substrate, GtfZ-CD2 displayed an efficient transglycosidase activity with sucrose as donor substrate. Kinetic analysis showed that the GtfZ-CD2-catalyzed transglycosylation reaction follows a Ping Pong Bi Bi mechanism, indicating the in-turn binding of donor and acceptor substrates in the active site. Structural characterization of the products revealed that GtfZ-CD2 catalyzes the synthesis of single glucosyl (α1 → 3) linked branches onto dextran, resulting in the production of highly branched comb-like α-glucan products. These (α1 → 3) branches can be formed on adjacent positions, as shown when isomaltotriose was used as acceptor substrate. Homology modeling of the GtfZ-CD1 and GtfZ-CD2 protein structure strongly suggests that amino acid differences in conserved motifs II, III, and IV in the catalytic domain contribute to product specificity. Our present study highlights the ability of beneficial lactic acid bacteria to produce structurally complex α-glucans and provides novel insights into the molecular mechanism of an (α1 → 3) branching sucrase.


Asunto(s)
Glicosiltransferasas/química , Sacarasa/química , Biocatálisis , Dominio Catalítico , Dextranos/metabolismo , Glucanos/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Cinética , Lactobacillus/química , Lactobacillus/enzimología , Lactobacillus/genética , Sacarasa/genética , Sacarasa/metabolismo
11.
Biochemistry ; 56(24): 3109-3118, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28538097

RESUMEN

The ß-galactosidase enzyme from Bacillus circulans ATCC 31382 BgaD is widely used in the food industry to produce prebiotic galactooligosaccharides (GOS). Recently, the crystal structure of a C-terminally truncated version of the enzyme (BgaD-D) has been elucidated. The roles of active site amino acid residues in ß-galactosidase enzyme reaction and product specificity have remained unknown. On the basis of a structural alignment of the ß-galactosidase enzymes BgaD-D from B. circulans and BgaA from Streptococcus pneumoniae, and the complex of BgaA with LacNAc, we identified eight active site amino acid residues (Arg185, Asp481, Lys487, Tyr511, Trp570, Trp593, Glu601, and Phe616) in BgaD-D. This study reports an investigation of the functional roles of these residues, using site-directed mutagenesis, and a detailed biochemical characterization and product profile analysis of the mutants obtained. The data show that these residues are involved in binding and positioning of the substrate and thus determine the BgaD-D activity and product linkage specificity. This study provides detailed insights into the structure-function relationships of the B. circulans BgaD-D enzyme, especially regarding GOS product linkage specificity, allowing the rational mutation of ß-galactosidase enzymes to produce specific mixtures of GOS structures.


Asunto(s)
Bacillus/enzimología , Dominio Catalítico , beta-Galactosidasa/química , Secuencia de Aminoácidos , Biocatálisis , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Alineación de Secuencia , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
12.
Biochemistry ; 56(5): 704-711, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28092444

RESUMEN

Microbial ß-galactosidase enzymes are widely used as biocatalysts in industry to produce prebiotic galactooligosaccharides (GOS) from lactose. GOS mixtures are used as beneficial additives in infant formula to mimic the prebiotic effects of human milk oligosaccharides (hMOS). The structural variety in GOS mixtures is significantly lower than in hMOS. Since this structural complexity is considered as the basis for the multiple biological functions of hMOS, it is important to broaden the variety of GOS structures. In this study, residue R484 near +1 subsite of the C-terminally truncated ß-galactosidase from Bacillus circulans (BgaD-D) was subjected to site saturation mutagenesis. Especially the R484S and R484H mutant enzymes displayed significantly altered enzyme specificity, leading to a new type of GOS mixture with altered structures and linkage types. The GOS mixtures produced by these mutant enzymes contained 14 structures that were not present in the wild-type enzyme GOS mixture; 10 of these are completely new structures. The GOS produced by these mutant enzymes contained a combination of (ß1 → 3) and (ß1 → 4) linkages, while the wild-type enzyme has a clear preference toward (ß1 → 4) linkages. The yield of the trisaccharide ß-d-Galp-(1 → 3)-ß-d-Galp-(1 → 4)-d-Glcp produced by mutants R484S and R484H increased 50 times compared to that of the wild-type enzyme. These results indicate that residue R484 is crucial for the linkage specificity of BgaD-D. This is the first study showing that ß-galactosidase enzyme engineering results in an altered GOS linkage specificity and product mixture. The more diverse GOS mixtures produced by these engineered enzymes may find industrial applications.


Asunto(s)
Bacillus/enzimología , Proteínas Bacterianas/metabolismo , Galactosa/química , Oligosacáridos/química , Ingeniería de Proteínas , beta-Galactosidasa/metabolismo , Arginina/química , Arginina/genética , Arginina/metabolismo , Bacillus/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Secuencia de Carbohidratos , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Cinética , Lactosa/química , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Oligosacáridos/biosíntesis , Prebióticos/provisión & distribución , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad , beta-Galactosidasa/química , beta-Galactosidasa/genética
13.
Biochim Biophys Acta ; 1860(6): 1224-36, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26868718

RESUMEN

BACKGROUND: Originally the glycoside hydrolase (GH) family 70 only comprised glucansucrases of lactic acid bacteria which synthesize α-glucan polymers from sucrose. Recently we have identified 2 novel subfamilies of GH70 enzymes represented by the Lactobacillus reuteri 121 GtfB and the Exiguobacterium sibiricum 255-15 GtfC enzymes. Both enzymes catalyze the cleavage of (α1→4) linkages in maltodextrin/starch and the synthesis of consecutive (α1→6) linkages. Here we describe a novel GH70 enzyme from the nitrogen-fixing Gram-negative bacterium Azotobacter chroococcum, designated as GtfD. METHODS: The purified recombinant GtfD enzyme was biochemically characterized using the amylose-staining assay and its products were identified using profiling chromatographic techniques (TLC and HPAEC-PAD). Glucans produced by the GtfD enzyme were analyzed by HPSEC-MALLS-RI, methylation analysis, 1D/2D [1]H/[13]C NMR spectroscopy and enzymatic degradation studies. RESULTS: The A. chroococcum GtfD is closely related to GtfC enzymes, sharing the same non-permuted domain organization also found in GH13 enzymes and displaying 4,6-α-glucanotransferase activity. However, the GtfD enzyme is unable to synthesize consecutive (α1→6) glucosidic bonds. Instead, it forms a high molecular mass and branched α-glucan with alternating (α1→4) and (α1→6) linkages from amylose/starch, highly similar to the reuteran polymer synthesized by the L. reuteri GtfA glucansucrase from sucrose. CONCLUSIONS: In view of its origin and specificity, the GtfD enzyme represents a unique evolutionary intermediate between family GH13 (α-amylase) and GH70 (glucansucrase) enzymes. GENERAL SIGNIFICANCE: This study expands the natural repertoire of starch-converting enzymes providing the first characterization of an enzyme that converts starch into a reuteran-like α-glucan polymer, regarded as a health promoting food ingredient.


Asunto(s)
Azotobacter/enzimología , Glucanos/biosíntesis , Sistema de la Enzima Desramificadora del Glucógeno/metabolismo , Polisacáridos/metabolismo , Almidón/metabolismo , Secuencia de Aminoácidos , Sistema de la Enzima Desramificadora del Glucógeno/química , Datos de Secuencia Molecular , Oligosacáridos/biosíntesis , Especificidad por Sustrato
14.
BMC Genomics ; 18(1): 593, 2017 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-28793878

RESUMEN

BACKGROUND: Bacteria of the genus Rhodococcus are well known for their ability to degrade a large range of organic compounds. Some rhodococci are free-living, saprophytic bacteria; others are animal and plant pathogens. Recently, several studies have shown that their genomes encode putative pathways for the synthesis of a large number of specialized metabolites that are likely to be involved in microbe-microbe and host-microbe interactions. To systematically explore the specialized metabolic potential of this genus, we here performed a comprehensive analysis of the biosynthetic coding capacity across publicly available rhododoccal genomes, and compared these with those of several Mycobacterium strains as well as that of their mutual close relative Amycolicicoccus subflavus. RESULTS: Comparative genomic analysis shows that most predicted biosynthetic gene cluster families in these strains are clade-specific and lack any homology with gene clusters encoding the production of known natural products. Interestingly, many of these clusters appear to encode the biosynthesis of lipopeptides, which may play key roles in the diverse environments were rhodococci thrive, by acting as biosurfactants, pathogenicity factors or antimicrobials. We also identified several gene cluster families that are universally shared among all three genera, which therefore may have a more 'primary' role in their physiology. Inactivation of these clusters by mutagenesis might help to generate weaker strains that can be used as live vaccines. CONCLUSIONS: The genus Rhodococcus thus provides an interesting target for natural product discovery, in view of its large and mostly uncharacterized biosynthetic repertoire, its relatively fast growth and the availability of effective genetic tools for its genomic modification.


Asunto(s)
Genómica , Rhodococcus/genética , Rhodococcus/metabolismo , Adaptación Fisiológica/genética , Lipopéptidos/biosíntesis , Familia de Multigenes/genética , Filogenia , Rhodococcus/fisiología , Especificidad de la Especie
15.
Microbiology (Reading) ; 163(7): 1030-1041, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28714842

RESUMEN

Polyfructans are synthesized from sucrose by plants (mostly inulin) and by both Gram-negative and Gram-positive bacteria (mostly levan). In the phylum Actinobacteria only levan synthesis by Actinomyces species has been reported. We have identified a putative fructansucrase gene (hugO) in Streptomyces viridochromogenes DSM40736 (Tü494). HugO was heterologously expressed and biochemically characterized. HPSEC-MALLS and 2D-1H-13C nuclear magnetic resonance (NMR) spectroscopy analysis showed that the fructan polymer produced in vitro has an Molecular Weight of 2.5*107 Da and is an inulin that is mainly composed of (ß2-1)-linked fructose units. This is the first report of a fructansucrase from Streptomyces and an inulosucrase from Actinobacteria. Database searches showed that fructansucrases clearly occur more widely in streptomycetes. Analysis of the active site of HugO and other actinobacterial Gram-positive fructansucrases revealed that their +1 substrate-binding sites are conserved, but are most similar to those in Gram-negative fructansucrases. HugO also resembles Gram-negative fructansucrases in not requiring calcium ions for activity. The origin and properties of HugO and other actinobacterial fructansucrases thus clearly differ from those of previously characterized Gram-positive fructansucrases.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Clonación Molecular , Hexosiltransferasas/química , Hexosiltransferasas/genética , Streptomyces/enzimología , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Fructanos/metabolismo , Hexosiltransferasas/aislamiento & purificación , Hexosiltransferasas/metabolismo , Inulina/metabolismo , Peso Molecular , Sistemas de Lectura Abierta , Streptomyces/química , Streptomyces/genética , Streptomyces/metabolismo , Especificidad por Sustrato
16.
Appl Microbiol Biotechnol ; 101(11): 4495-4505, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28258313

RESUMEN

Previously, we have shown that the glucansucrase GtfA-ΔN enzyme of Lactobacillus reuteri 121, incubated with sucrose, efficiently glucosylated catechol and we structurally characterized catechol glucosides with up to five glucosyl units attached (te Poele et al. in Bioconjug Chem 27:937-946, 2016). In the present study, we observed that upon prolonged incubation of GtfA-ΔN with 50 mM catechol and 1000 mM sucrose, all catechol had become completely glucosylated and then started to reappear. Following depletion of sucrose, this glucansucrase GtfA-ΔN used both α-D-Glcp-catechol and α-D-Glcp-(1→4)-α-D-Glcp-catechol as donor substrates and transferred a glucose unit to other catechol glycoside molecules or to sugar oligomers. In the absence of sucrose, GtfA-ΔN used α-D-Glcp-catechol both as donor and acceptor substrate to synthesize catechol glucosides with 2 to 10 glucose units attached and formed gluco-oligosaccharides up to a degree of polymerization of 4. Also two other glucansucrases tested, Gtf180-ΔN from L. reuteri 180 and GtfML1-ΔN from L. reuteri ML1, used α-D-Glcp-catechol and di-glucosyl-catechol as donor/acceptor substrate to synthesize both catechol glucosides and gluco-oligosaccharides. With sucrose as donor substrate, the three glucansucrase enzymes also efficiently glucosylated the phenolic compounds pyrogallol, resorcinol, and ethyl gallate; also these mono-glucosides were used as donor/acceptor substrates.


Asunto(s)
Catecoles/metabolismo , Glucósidos/metabolismo , Glicosiltransferasas/metabolismo , Limosilactobacillus reuteri/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Catecoles/farmacología , Cristalografía por Rayos X , Ácido Gálico/análogos & derivados , Ácido Gálico/metabolismo , Glucosa/metabolismo , Glicosilación , Glicosiltransferasas/biosíntesis , Limosilactobacillus reuteri/efectos de los fármacos , Oligosacáridos/química , Pirogalol/metabolismo , Resorcinoles/metabolismo , Sacarosa/farmacología
17.
Cell Mol Life Sci ; 73(14): 2681-706, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27155661

RESUMEN

Lactic acid bacteria (LAB) are known to produce large amounts of α-glucan exopolysaccharides. Family GH70 glucansucrase (GS) enzymes catalyze the synthesis of these α-glucans from sucrose. The elucidation of the crystal structures of representative GS enzymes has advanced our understanding of their reaction mechanism, especially structural features determining their linkage specificity. In addition, with the increase of genome sequencing, more and more GS enzymes are identified and characterized. Together, such knowledge may promote the synthesis of α-glucans with desired structures and properties from sucrose. In the meantime, two new GH70 subfamilies (GTFB- and GTFC-like) have been identified as 4,6-α-glucanotransferases (4,6-α-GTs) that represent novel evolutionary intermediates between the family GH13 and "classical GH70 enzymes". These enzymes are not active on sucrose; instead, they use (α1 â†’ 4) glucans (i.e. malto-oligosaccharides and starch) as substrates to synthesize novel α-glucans by introducing linear chains of (α1 â†’ 6) linkages. All these GH70 enzymes are very interesting biocatalysts and hold strong potential for applications in the food, medicine and cosmetic industries. In this review, we summarize the microbiological distribution and the structure-function relationships of family GH70 enzymes, introduce the two newly identified GH70 subfamilies, and discuss evolutionary relationships between family GH70 and GH13 enzymes.


Asunto(s)
Evolución Molecular , Sistema de la Enzima Desramificadora del Glucógeno/química , Sistema de la Enzima Desramificadora del Glucógeno/metabolismo , Glicosiltransferasas/química , Glicosiltransferasas/metabolismo , Bacterias/enzimología , Biocatálisis , Relación Estructura-Actividad
18.
J Biol Chem ; 290(50): 30131-41, 2015 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-26507662

RESUMEN

α-Glucans produced by glucansucrase enzymes hold strong potential for industrial applications. The exact determinants of the linkage specificity of glucansucrase enzymes have remained largely unknown, even with the recent elucidation of glucansucrase crystal structures. Guided by the crystal structure of glucansucrase GTF180-ΔN from Lactobacillus reuteri 180 in complex with the acceptor substrate maltose, we identified several residues (Asp-1028 and Asn-1029 from domain A, as well as Leu-938, Ala-978, and Leu-981 from domain B) near subsite +1 that may be critical for linkage specificity determination, and we investigated these by random site-directed mutagenesis. First, mutants of Ala-978 (to Leu, Pro, Phe, or Tyr) and Asp-1028 (to Tyr or Trp) with larger side chains showed reduced degrees of branching, likely due to the steric hindrance by these bulky residues. Second, Leu-938 mutants (except L938F) and Asp-1028 mutants showed altered linkage specificity, mostly with increased (α1 → 6) linkage synthesis. Third, mutation of Leu-981 and Asn-1029 significantly affected the transglycosylation reaction, indicating their essential roles in acceptor substrate binding. In conclusion, glucansucrase product specificity is determined by an interplay of domain A and B residues surrounding the acceptor substrate binding groove. Residues surrounding the +1 subsite thus are critical for activity and specificity of the GTF180 enzyme and play different roles in the enzyme functions. This study provides novel insights into the structure-function relationships of glucansucrase enzymes and clearly shows the potential of enzyme engineering to produce tailor-made α-glucans.


Asunto(s)
Aminoácidos/metabolismo , Glicosiltransferasas/metabolismo , Limosilactobacillus reuteri/enzimología , Secuencia de Aminoácidos , Aminoácidos/química , Dominio Catalítico , Cromatografía de Gases y Espectrometría de Masas , Glicosiltransferasas/química , Glicosiltransferasas/genética , Metilación , Datos de Secuencia Molecular , Mutagénesis , Espectroscopía de Protones por Resonancia Magnética , Homología de Secuencia de Aminoácido
19.
Glycobiology ; 26(11): 1157-1170, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27550196

RESUMEN

Recently, we have shown that glycoside hydrolases enzymes of family GH17 from proteobacteria (genera Pseudomonas, Azotobacter) catalyze elongation transfer reactions with laminari-oligosaccharides generating (ß1→3) linkages preferably and to a lesser extent (ß1→6) or (ß1→4) linkages. In the present study, the cloning and characterization of the gene encoding the structurally very similar GH17 domain of the NdvB enzyme from Bradyrhizobium diazoefficiens, designated Glt20, as well as its catalytic properties are described. The Glt20 enzyme was strikingly different from the previously investigated bacterial GH17 enzymes, both regarding substrate specificity and product formation. The Azotobacter and Pseudomonas enzymes cleaved the donor laminari-oligosaccharide substrates three or four moieties from the non-reducing end, generating linear oligosaccharides. In contrast, the Glt20 enzyme cleaved donor laminari-oligosaccharide substrates two glucose moieties from the reducing end, releasing laminaribiose and transferring the remainder to laminari-oligosaccharide acceptor substrates creating only (ß1→3)(ß1→6) branching points. This enables Glt20 to transfer larger oligosaccharide chains than the other type of bacterial enzymes previously described, and helps explain the biologically significant formation of cyclic ß-glucans in B. diazoefficiens.


Asunto(s)
Bradyrhizobium/enzimología , Oligosacáridos/metabolismo , beta-Glucosidasa/metabolismo , Biocatálisis , Proteínas Recombinantes/metabolismo , beta-Glucosidasa/genética
20.
Appl Environ Microbiol ; 82(2): 756-66, 2016 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-26590275

RESUMEN

The glycoside hydrolase 70 (GH70) family originally was established for glucansucrase enzymes found solely in lactic acid bacteria synthesizing α-glucan polysaccharides from sucrose (e.g., GtfA). In recent years, we have characterized GtfB and related Lactobacillus enzymes as 4,6-α-glucanotransferase enzymes. These GtfB-type enzymes constitute the first GH70 subfamily of enzymes that are unable to act on sucrose as a substrate but are active with maltodextrins and starch, cleave α1→4 linkages, and synthesize linear α1→6-glucan chains. The GtfB disproportionating type of activity results in the conversion of malto-oligosaccharides into isomalto/malto-polysaccharides with a relatively high percentage of α1→6 linkages. This paper reports the identification of the members of a second GH70 subfamily (designated GtfC enzymes) and the characterization of the Exiguobacterium sibiricum 255-15 GtfC enzyme, which is also inactive with sucrose and displays 4,6-α-glucanotransferase activity with malto-oligosaccharides. GtfC differs from GtfB in synthesizing isomalto/malto-oligosaccharides. Biochemically, the GtfB- and GtfC-type enzymes are related, but phylogenetically, they clearly constitute different GH70 subfamilies, displaying only 30% sequence identity. Whereas the GtfB-type enzyme largely has the same domain order as glucansucrases (with α-amylase domains A, B, and C plus domains IV and V), this GtfC-type enzyme differs in the order of these domains and completely lacks domain V. In GtfC, the sequence of conserved regions I to IV of clan GH-H is identical to that in GH13 (I-II-III-IV) but different from that in GH70 (II-III-IV-I because of a circular permutation of the (ß/α)8 barrel. The GtfC 4,6-α-glucanotransferase enzymes thus represent structurally and functionally very interesting evolutionary intermediates between α-amylase and glucansucrase enzymes.


Asunto(s)
Bacillales/enzimología , Proteínas Bacterianas/metabolismo , Glicósido Hidrolasas/metabolismo , Secuencia de Aminoácidos , Bacillales/química , Bacillales/clasificación , Bacillales/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Glicósido Hidrolasas/química , Glicósido Hidrolasas/genética , Datos de Secuencia Molecular , Familia de Multigenes , Filogenia , Estructura Terciaria de Proteína , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA