RESUMEN
Sepsis is a dysregulated inflammatory consequence of systemic infection. As a result, excessive platelet activation leads to thrombosis and coagulopathy, but we currently lack sufficient understanding of these processes. Here, using the cecal ligation and puncture (CLP) model of sepsis, we observed septic thrombosis and neutrophil extracellular trap formation (NETosis) within the mouse vasculature by intravital microscopy. STING activation in platelets was a critical driver of sepsis-induced pathology. Platelet-specific STING deficiency suppressed platelet activation and granule secretion, which alleviated sepsis-induced intravascular thrombosis and NETosis in mice. Mechanistically, sepsis-derived cGAMP promoted the binding of STING to STXBP2, the assembly of SNARE complex, granule secretion, and subsequent septic thrombosis, which probably depended on the palmitoylation of STING. We generated a peptide, C-ST5, to block STING binding to STXBP2. Septic mice treated with C-ST5 showed reduced thrombosis. Overall, platelet activation via STING reveals a potential strategy for limiting life-threatening sepsis-mediated coagulopathy.
Asunto(s)
Trampas Extracelulares , Sepsis , Trombosis , Animales , Ratones , Plaquetas/metabolismo , Trampas Extracelulares/metabolismo , Ratones Endogámicos C57BL , Proteínas Munc18/metabolismo , Activación Plaquetaria , Sepsis/metabolismo , Trombosis/metabolismoRESUMEN
Inflammasomes are involved in diverse inflammatory diseases, so the activation of inflammasomes needs to be tightly controlled to prevent excessive inflammation. However, the endogenous regulatory mechanisms of inflammasome activation are still unclear. Here, we report that the neurotransmitter dopamine (DA) inhibits NLRP3 inflammasome activation via dopamine D1 receptor (DRD1). DRD1 signaling negatively regulates NLRP3 inflammasome via a second messenger cyclic adenosine monophosphate (cAMP), which binds to NLRP3 and promotes its ubiquitination and degradation via the E3 ubiquitin ligase MARCH7. Importantly, in vivo data show that DA and DRD1 signaling prevent NLRP3 inflammasome-dependent inflammation, including neurotoxin-induced neuroinflammation, LPS-induced systemic inflammation, and monosodium urate crystal (MSU)-induced peritoneal inflammation. Taken together, our results reveal an endogenous mechanism of inflammasome regulation and suggest DRD1 as a potential target for the treatment of NLRP3 inflammasome-driven diseases.
Asunto(s)
Dopamina/metabolismo , Inflamasomas/inmunología , Neurotransmisores/metabolismo , Transducción de Señal , Animales , Autofagia , Proteínas Portadoras/metabolismo , AMP Cíclico/metabolismo , Inflamación/inmunología , Ratones , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR , Agregado de Proteínas , Receptores Dopaminérgicos/genética , Receptores Dopaminérgicos/metabolismo , Receptores de Dopamina D1 , UbiquitinaciónRESUMEN
The transcriptional regulators YAP and TAZ play important roles in development, physiology, and tumorigenesis and are negatively controlled by the Hippo pathway. It is yet unknown why the YAP/ TAZ proteins are frequently activated in human malignancies in which the Hippo pathway is still active. Here, by a gain-of-function cancer metastasis screen, we discovered OTUB2 as a cancer stemness and metastasis-promoting factor that deubiquitinates and activates YAP/TAZ. We found OTUB2 to be poly-SUMOylated on lysine 233, and this SUMOylation enables it to bind YAP/TAZ. We also identified a yet-unknown SUMO-interacting motif (SIM) in YAP and TAZ required for their association with SUMOylated OTUB2. Importantly, EGF and oncogenic KRAS induce OTUB2 poly-SUMOylation and thereby activate YAP/TAZ. Our results establish OTUB2 as an essential modulator of YAP/TAZ and also reveal a novel mechanism via which YAP/TAZ activity is induced by oncogenic KRAS.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias de la Mama/enzimología , Movimiento Celular , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células Madre Neoplásicas/enzimología , Fosfoproteínas/metabolismo , Tioléster Hidrolasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Diferenciación Celular , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Factor de Crecimiento Epidérmico/farmacología , Receptores ErbB/agonistas , Receptores ErbB/metabolismo , Femenino , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Lisina , Ratones Endogámicos BALB C , Ratones Desnudos , Mutación , Metástasis de la Neoplasia , Células Madre Neoplásicas/patología , Fenotipo , Fosfoproteínas/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteolisis , Proteínas Proto-Oncogénicas p21(ras)/genética , Transducción de Señal , Sumoilación , Tioléster Hidrolasas/genética , Factores de Tiempo , Transactivadores , Factores de Transcripción , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Proteínas Señalizadoras YAPRESUMEN
Elucidation of endogenous cellular protein-protein interactions and their networks is most desirable for biological studies. Here we report our study of endogenous human coregulator protein complex networks obtained from integrative mass spectrometry-based analysis of 3290 affinity purifications. By preserving weak protein interactions during complex isolation and utilizing high levels of reciprocity in the large dataset, we identified many unreported protein associations, such as a transcriptional network formed by ZMYND8, ZNF687, and ZNF592. Furthermore, our work revealed a tiered interplay within networks that share common proteins, providing a conceptual organization of a cellular proteome composed of minimal endogenous modules (MEMOs), complex isoforms (uniCOREs), and regulatory complex-complex interaction networks (CCIs). This resource will effectively fill a void in linking correlative genomic studies with an understanding of transcriptional regulatory protein functions within the proteome for formulation and testing of future hypotheses.
Asunto(s)
Proteínas/metabolismo , Proteoma/análisis , Secuencia de Aminoácidos , Proteína BRCA1/metabolismo , Estudio de Asociación del Genoma Completo , Humanos , Inmunoprecipitación , Espectrometría de Masas , Datos de Secuencia Molecular , Mapeo de Interacción de Proteínas , Receptores Citoplasmáticos y Nucleares/metabolismo , Transcripción GenéticaRESUMEN
Embryo implantation, a crucial step in human reproduction, is tightly controlled by estrogen and progesterone (P4) via estrogen receptor alpha and progesterone receptor (PGR), respectively. Here, we report that N6-methyladenosine (m6A), the most abundant mRNA modification in eukaryotes, plays an essential role in embryo implantation through the maintenance of P4 signaling. Conditional deletion of methyltransferase-like 3 (Mettl3), encoding the m6A writer METTL3, in the female reproductive tract using a Cre mouse line with Pgr promoter (Pgr-Cre) resulted in complete implantation failure due to pre-implantation embryo loss and defective uterine receptivity. Moreover, the uterus of Mettl3 null mice failed to respond to artificial decidualization. We further found that Mettl3 deletion was accompanied by a marked decrease in PGR protein expression. Mechanistically, we found that Pgr mRNA is a direct target for METTL3-mediated m6A modification. A luciferase assay revealed that the m6A modification in the 5' untranslated region (5'-UTR) of Pgr mRNA enhances PGR protein translation efficiency in a YTHDF1-dependent manner. Finally, we demonstrated that METTL3 is required for human endometrial stromal cell decidualization in vitro and that the METTL3-PGR axis is conserved between mice and humans. In summary, this study provides evidence that METTL3 is essential for normal P4 signaling during embryo implantation via m6A-mediated translation control of Pgr mRNA.
Asunto(s)
Progesterona , Receptores de Progesterona , Femenino , Ratones , Humanos , Animales , Progesterona/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Implantación del Embrión/genética , Útero/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones Noqueados , ARN Mensajero/metabolismoRESUMEN
BACKGROUND & AIMS: Gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor of the gastrointestinal tract, and it has high metastatic and recurrence rates. We aimed to characterize the proteomic features of GIST to understand biological processes and treatment vulnerabilities. METHODS: Quantitative proteomics and phosphoproteomics analyses were performed on 193 patients with GIST to reveal the biological characteristics of GIST. Data-driven hypotheses were tested by performing functional experiments using both GIST cell lines and xenograft mouse models. RESULTS: Proteomic analysis revealed differences in the molecular features of GISTs from different locations or with different histological grades. MAPK7 was identified and functionally proved to be associated with tumor cell proliferation in GIST. Integrative analysis revealed that increased SQSTM1 expression inhibited the patient response to imatinib mesylate. Proteomics subtyping identified 4 clusters of tumors with different clinical and molecular attributes. Functional experiments confirmed the role of SRSF3 in promoting tumor cell proliferation and leading to poor prognosis. CONCLUSIONS: Our study provides a valuable data resource and highlights potential therapeutic approaches for GIST.
Asunto(s)
Antineoplásicos , Neoplasias Gastrointestinales , Tumores del Estroma Gastrointestinal , Humanos , Animales , Ratones , Tumores del Estroma Gastrointestinal/tratamiento farmacológico , Tumores del Estroma Gastrointestinal/genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Proteómica , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Línea Celular Tumoral , Modelos Animales de Enfermedad , Neoplasias Gastrointestinales/tratamiento farmacológico , Neoplasias Gastrointestinales/genética , Factores de Empalme Serina-ArgininaRESUMEN
BACKGROUND AND AIMS: Epigenetic reprogramming and escape from terminal differentiation are poorly understood enabling characteristics of liver cancer. Keratin 19 (KRT19), classically known to form the intermediate filament cytoskeleton, is a marker of stemness and worse prognosis in liver cancer. This study aimed to address the functional roles of KRT19 in liver tumorigenesis and to elucidate the underlying mechanisms. APPROACH AND RESULTS: Using multiplexed genome editing of hepatocytes in vivo, we demonstrated that KRT19 promoted liver tumorigenesis in mice. Cell fractionation revealed a previously unrecognized nuclear fraction of KRT19. Tandem affinity purification identified histone deacetylase 1 and REST corepressor 1, components of the corepressor of RE-1 silencing transcription factor (CoREST) complex as KRT19-interacting proteins. KRT19 knockout markedly enhanced histone acetylation levels. Mechanistically, KRT19 promotes CoREST complex formation by enhancing histone deacetylase 1 and REST corepressor 1 interaction, thus increasing the deacetylase activity. ChIP-seq revealed hepatocyte-specific genes, such as hepatocyte nuclear factor 4 alpha ( HNF4A ), as direct targets of KRT19-CoREST. In addition, we identified forkhead box P4 as a direct activator of aberrant KRT19 expression in liver cancer. Furthermore, treatment of primary liver tumors and patient-derived xenografts in mice suggest that KRT19 expression has the potential to predict response to histone deacetylase 1 inhibitors especially in combination with lenvatinib. CONCLUSIONS: Our data show that nuclear KRT19 acts as a transcriptional corepressor through promoting the deacetylase activity of the CoREST complex, resulting in dedifferentiation of liver cancer. These findings reveal a previously unrecognized function of KRT19 in directly shaping the epigenetic landscape in cancer.
RESUMEN
Human dental pulp stem cells (HDPSCs) showed an age-dependent decline in proliferation and differentiation capacity. Decline in proliferation and differentiation capacity affects the dental stromal tissue homeostasis and impairs the regenerative capability of HDPSCs. However, which age-correlated proteins regulate the senescence of HDPSCs remain unknown. Our study investigated the proteomic characteristics of HDPSCs isolated from subjects of different ages and explored the molecular mechanism of age-related changes in HDPSCs. Our study showed that the proliferation and osteogenic differentiation of HDPSCs were decreased, while the expression of aging-related genes (p21, p53) and proportion of senescence-associated ß-galactosidase (SA-ß-gal)-positive cells were increased with aging. The bioinformatic analysis identified that significant proteins positively correlated with age were enriched in response to the mammalian target of rapamycin (mTOR) signaling pathway (ILK, MAPK3, mTOR, STAT1, and STAT3). We demonstrated that OSU-T315, an inhibitor of integrin-linked kinase (ILK), rejuvenated aged HDPSCs, similar to rapamycin (an inhibitor of mTOR). Treatment with OSU-T315 decreased the expression of aging-related genes (p21, p53) and proportion of SA-ß-gal-positive cells in HDPSCs isolated from old (O-HDPSCs). Additionally, OSU-T315 promoted the osteoblastic differentiation capacity of O-HDPSCs in vitro and bone regeneration of O-HDPSCs in rat calvarial bone defects model. Our study indicated that the proliferation and osteoblastic differentiation of HDPSCs were impaired with aging. Notably, the ILK/AKT/mTOR/STAT1 signaling pathway may be a major factor in the regulation of HDPSC senescence, which help to provide interventions for HDPSC senescence.
Asunto(s)
Diferenciación Celular , Senescencia Celular , Pulpa Dental , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Células Madre , Serina-Treonina Quinasas TOR , Pulpa Dental/citología , Pulpa Dental/metabolismo , Humanos , Senescencia Celular/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Células Madre/metabolismo , Células Madre/citología , Diferenciación Celular/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Adolescente , Adulto , Animales , Proliferación Celular/efectos de los fármacos , Adulto Joven , Ratas , Masculino , Osteogénesis/efectos de los fármacos , Osteogénesis/genética , NiñoRESUMEN
Lysine lactylation (Kla) is a recently discovered histone mark derived from metabolic lactate. The NAD+ -dependent deacetylase SIRT3, which can also catalyze removal of the lactyl moiety from lysine, is expressed at low levels in hepatocellular carcinoma (HCC) and has been suggested to be an HCC tumor suppressor. Here we report that SIRT3 can delactylate non-histone proteins and suppress HCC development. Using SILAC-based quantitative proteomics, we identify cyclin E2 (CCNE2) as one of the lactylated substrates of SIRT3 in HCC cells. Furthermore, our crystallographic study elucidates the mechanism of CCNE2 K348la delactylation by SIRT3. Our results further suggest that lactylated CCNE2 promotes HCC cell growth, while SIRT3 activation by Honokiol induces HCC cell apoptosis and prevents HCC outgrowth in vivo by regulating Kla levels of CCNE2. Together, our results establish a physiological function of SIRT3 as a delactylase that is important for suppressing HCC, and our structural data could be useful for the future design of activators.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Sirtuina 3 , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Sirtuina 3/genética , Sirtuina 3/metabolismo , Lisina , Proliferación Celular , Ciclinas/genéticaRESUMEN
Accumulation of mutant proteins is a major cause of many diseases (collectively called proteopathies), and lowering the level of these proteins can be useful for treatment of these diseases. We hypothesized that compounds that interact with both the autophagosome protein microtubule-associated protein 1A/1B light chain 3 (LC3)1 and the disease-causing protein may target the latter for autophagic clearance. Mutant huntingtin protein (mHTT) contains an expanded polyglutamine (polyQ) tract and causes Huntington's disease, an incurable neurodegenerative disorder2. Here, using small-molecule-microarray-based screening, we identified four compounds that interact with both LC3 and mHTT, but not with the wild-type HTT protein. Some of these compounds targeted mHTT to autophagosomes, reduced mHTT levels in an allele-selective manner, and rescued disease-relevant phenotypes in cells and in vivo in fly and mouse models of Huntington's disease. We further show that these compounds interact with the expanded polyQ stretch and could lower the level of mutant ataxin-3 (ATXN3), another disease-causing protein with an expanded polyQ tract3. This study presents candidate compounds for lowering mHTT and potentially other disease-causing proteins with polyQ expansions, demonstrating the concept of lowering levels of disease-causing proteins using autophagosome-tethering compounds.
Asunto(s)
Alelos , Evaluación Preclínica de Medicamentos/métodos , Proteína Huntingtina/antagonistas & inhibidores , Proteína Huntingtina/genética , Proteínas Mutantes/antagonistas & inhibidores , Proteínas Mutantes/genética , Mutación/genética , Animales , Ataxina-3/genética , Autofagosomas/metabolismo , Autofagia , Modelos Animales de Enfermedad , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Femenino , Humanos , Proteína Huntingtina/química , Proteína Huntingtina/metabolismo , Masculino , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutación/efectos de los fármacos , Neuronas/citología , Péptidos/genética , Fenotipo , Reproducibilidad de los ResultadosRESUMEN
The heterogeneity of idiopathic pulmonary fibrosis (IPF) limits its diagnosis and treatment. The association between the pathophysiological features and the serum protein signatures of IPF currently remains unclear. The present study analyzed the specific proteins and patterns associated with the clinical parameters of IPF based on a serum proteomic dataset by data-independent acquisition using MS. Differentiated proteins in sera distinguished patients with IPF into three subgroups in signal pathways and overall survival. Aging-associated signatures by weighted gene correlation network analysis coincidently provided clear and direct evidence that aging is a critical risk factor for IPF rather than a single biomarker. Expression of LDHA and CCT6A, which was associated with glucose metabolic reprogramming, was correlated with high serum lactic acid content in patients with IPF. Cross-model analysis and machine learning showed that a combinatorial biomarker accurately distinguished patients with IPF from healthy individuals with an area under the curve of 0.848 (95% CI = 0.684-0.941) and validated from another cohort and ELISA assay. This serum proteomic profile provides rigorous evidence that enables an understanding of the heterogeneity of IPF and protein alterations that could help in its diagnosis and treatment decisions.
Asunto(s)
Fibrosis Pulmonar Idiopática , Proteómica , Humanos , Fibrosis Pulmonar Idiopática/diagnóstico , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Proteínas Sanguíneas , Biomarcadores , Chaperonina con TCP-1RESUMEN
Acupuncture is widely used to treat dry eye disease (DED), but its effect has not been reported in treating video display terminal (VDT)-related dry eye, and the mechanism of acupuncture on VDT-related dry eye is also unknown. In our study, the tear proteome was compared with identifying possible mechanisms and biomarkers for predicting acupuncture effectiveness in VDT-related dry eye. The results showed that the ocular surface disease index scores were significantly different between the acupuncture group (AC group) and artificial tears group (AT group) at the end of the study, whereas tear film breakup time (TFBUT) and Schirmer I test (SIT) were not significantly different between the groups. Proteome changes pre- and post-treatment in the AC group were associated with B cell-related immune processes, inflammation, glycolysis, and actin cytoskeleton. Furthermore, the proteins hexosaminidase A and mannose-binding lectin 1 could prospectively predict whether acupuncture treatment was effective. Therefore, we believe that acupuncture can provide greater improvement in the clinical symptoms of VDT-related dry eye than artificial tears. The mechanism of acupuncture in VDT-related dry eye treatment may be associated with glycolysis- and actin cytoskeleton remodeling-mediated inflammatory and immune processes. Additionally, hexosaminidase A and mannose-binding lectin 1 are biomarkers for predicting the efficacy of acupuncture for VDT-related dry eye.
Asunto(s)
Terapia por Acupuntura , Síndromes de Ojo Seco , Proteómica , Lágrimas , Humanos , Síndromes de Ojo Seco/terapia , Síndromes de Ojo Seco/metabolismo , Lágrimas/metabolismo , Terapia por Acupuntura/métodos , Masculino , Femenino , Proteómica/métodos , Persona de Mediana Edad , Terminales de Computador , Adulto , Biomarcadores/metabolismo , Biomarcadores/análisis , Proteoma/análisis , Proteoma/metabolismo , Proteínas del Ojo/metabolismoRESUMEN
Liver oncogenesis is accompanied by discernible protein changes in the bloodstream. By employing plasma proteomic profiling, we can delve into the molecular mechanisms of liver cancer and pinpoint potential biomarkers. In this nested case-control study, we applied liquid chromatography-tandem mass spectrometry for proteome profiling in baseline plasma samples. Differential protein expression was determined and was subjected to functional enrichment, network, and Mendelian randomization (MR) analyses. We identified 193 proteins with notable differential levels between the groups. Of these proteins, MR analysis offered a compelling negative association between apolipoprotein B (APOB) and liver cancer. This association was further corroborated in the UK Biobank cohort: genetically predicted APOB levels were associated with a 31% (95% CI 19-42%) decreased risk of liver cancer; and phenotypic analysis indicated an 11% (95% CI 8-14%) decreased liver cancer risk for every 0.1 g/L increase of circulating APOB levels. Multivariable MR analysis suggested that the hepatic fat content might fully mediate the APOB-liver cancer connection. In summary, we identified some plasma proteins, particularly APOB, as potential biomarkers of liver cancer. Our findings underscore the intricate link between lipid metabolism and liver cancer, offering hints for targeted prophylactic strategies and early detection.
Asunto(s)
Apolipoproteínas B , Neoplasias Hepáticas , Proteogenómica , Humanos , Neoplasias Hepáticas/sangre , Neoplasias Hepáticas/genética , Proteogenómica/métodos , Estudios de Casos y Controles , Apolipoproteínas B/sangre , Apolipoproteínas B/genética , Femenino , Masculino , Persona de Mediana Edad , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Análisis de la Aleatorización Mendeliana , Anciano , Cromatografía Liquida , Espectrometría de Masas en Tándem , Factores de Riesgo , Metabolismo de los Lípidos/genética , Apolipoproteína B-100RESUMEN
BACKGROUND & AIMS: Endoplasmic reticulum (ER) stress of hepatocytes plays a causative role in non-alcoholic fatty liver disease (NAFLD). Reduced expression of hepatic nuclear factor 4α (HNF4α) is a critical event in the pathogenesis of NAFLD and other liver diseases. Whether ER stress regulates HNF4α expression remains unknown. The aim of this study was to delineate the machinery of HNF4α protein degradation and explore a therapeutic strategy based on protecting HNF4α stability during NAFLD progression. METHODS: Correlation of HNF4α and tribbles homologue 3 (TRIB3), an ER stress sensor, was evaluated in human and mouse NAFLD tissues. RNA-sequencing, mass spectrometry analysis, co-immunoprecipitation, in vivo and in vitro ubiquitination assays were used to elucidate the mechanisms of TRIB3-mediated HNF4α degradation. Molecular docking and co-immunoprecipitation analyses were performed to identify a cell-penetrating peptide that ablates the TRIB3-HNF4α interaction. RESULTS: TRIB3 directly interacts with HNF4α and mediates ER stress-induced HNF4α degradation. TRIB3 recruits tripartite motif containing 8 (TRIM8) to form an E3 ligase complex that catalyzes K48-linked polyubiquitination of HNF4α on lysine 470. Abrogating the degradation of HNF4α attenuated the effect of TRIB3 on a diet-induced NAFLD model. Moreover, the TRIB3 gain-of-function variant p.Q84R is associated with NAFLD progression in patients, and induces lower HNF4α levels and more severe hepatic steatosis in mice. Importantly, disrupting the TRIB3-HNF4α interaction using a cell-penetrating peptide restores HNF4α levels and ameliorates NAFLD progression in mice. CONCLUSIONS: Our findings unravel the machinery of HNF4α protein degradation and indicate that targeting TRIB3-TRIM8 E3 complex-mediated HNF4α polyubiquitination may be an ideal strategy for NAFLD therapy. IMPACT AND IMPLICATIONS: Reduced expression of hepatic nuclear factor 4α (HNF4α) is a critical event in the pathogenesis of NAFLD and other liver diseases. However, the mechanism of HNF4α protein degradation remains unknown. Herein, we reveal that TRIB3-TRIM8 E3 ligase complex is responsible for HNF4α degradation during NAFLD. Inhibiting the TRIB3-HNF4α interaction effectively stabilized HNF4α protein levels and transcription factor activity in the liver and ameliorated TRIB3-mediated NAFLD progression. Our findings demonstrate that disturbing the TRIM8-TRIB3-HNF4α interaction may provide a novel approach to treat NAFLD and even other liver diseases by stabilizing the HNF4α protein.
Asunto(s)
Péptidos de Penetración Celular , Enfermedad del Hígado Graso no Alcohólico , Proteínas Serina-Treonina Quinasas , Animales , Humanos , Ratones , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Péptidos de Penetración Celular/metabolismo , Hígado/patología , Simulación del Acoplamiento Molecular , Proteínas del Tejido Nervioso , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Represoras , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
COVID-19 is characterized by dysregulated immune responses, metabolic dysfunction and adverse effects on the function of multiple organs. To understand host responses to COVID-19 pathophysiology, we combined transcriptomics, proteomics, and metabolomics to identify molecular markers in peripheral blood and plasma samples of 66 COVID-19-infected patients experiencing a range of disease severities and 17 healthy controls. A large number of expressed genes, proteins, metabolites, and extracellular RNAs (exRNAs) exhibit strong associations with various clinical parameters. Multiple sets of tissue-specific proteins and exRNAs varied significantly in both mild and severe patients suggesting a potential impact on tissue function. Chronic activation of neutrophils, IFN-I signaling, and a high level of inflammatory cytokines were observed in patients with severe disease progression. In contrast, COVID-19-infected patients experiencing milder disease symptoms showed robust T-cell responses. Finally, we identified genes, proteins, and exRNAs as potential biomarkers that might assist in predicting the prognosis of SARS-CoV-2 infection. These data refine our understanding of the pathophysiology and clinical progress of COVID-19.
Asunto(s)
COVID-19/sangre , COVID-19/patología , Biomarcadores/sangre , COVID-19/inmunología , COVID-19/virología , Femenino , Genómica/métodos , Humanos , Lipoproteínas/metabolismo , Masculino , Metabolómica/métodos , SARS-CoV-2/fisiología , Índice de Severidad de la Enfermedad , Carga ViralRESUMEN
The management and comprehension of relapsed or refractory multiple myeloma (RRMM) continues to pose a significant challenge. By integrating single-cell RNA sequencing (scRNA-seq) data of 15 patients with plasma cell disorders (PCDs) and proteomic data obtained from mass spectrometry-based analysis of CD138+ plasma cells (PCs) from 144 PCDs patients, we identified a state of malignant PCs characterized by high stemness score and increased proliferation originating from RRMM. This state has been designated as proliferating stem-like plasma cells (PSPCs). NUCKS1 was identified as the gene marker representing the stemness of PSPCs. Comparison of differentially expressed genes among various PC states revealed a significant elevation in LGALS1 expression in PSPCs. Survival analysis on the MMRF CoMMpass dataset and GSE24080 dataset established LGALS1 as a gene associated with unfavourable prognostic implications for multiple myeloma. Ultimately, we discovered three specific ligand-receptor pairs within the midkine (MDK) signalling pathway network that play distinct roles in facilitating efficient cellular communication between PSPCs and the surrounding microenvironment cells. These insights have the potential to contribute to the understanding of molecular mechanism and the development of therapeutic strategies involving the application of stem-like cells in RRMM treatment.
Asunto(s)
Mieloma Múltiple , Células Madre Neoplásicas , Células Plasmáticas , Proteómica , Análisis de la Célula Individual , Mieloma Múltiple/patología , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , Humanos , Células Plasmáticas/metabolismo , Células Plasmáticas/patología , Análisis de la Célula Individual/métodos , Proteómica/métodos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Masculino , Femenino , Galectina 1/genética , Galectina 1/metabolismo , Proliferación Celular , Análisis de Secuencia de ARN , Regulación Neoplásica de la Expresión Génica , Persona de Mediana EdadRESUMEN
BACKGROUND AND AIMS: Cholangiocarcinoma (CCA) is a highly heterogeneous cancer with limited understanding and few effective therapeutic approaches. We aimed at providing a proteogenomic CCA characterization to inform biological processes and treatment vulnerabilities. APPROACH AND RESULTS: Integrative genomic analysis with functional validation uncovered biological perturbations downstream of driver events including DPCR1 , RBM47 mutations, SH3BGRL2 copy number alterations, and FGFR2 fusions in CCA. Proteomic clustering identified three subtypes with distinct clinical outcomes, molecular features, and potential therapeutics. Phosphoproteomics characterized targetable kinases in CCA, suggesting strategies for effective treatment with CDK and MAPK inhibitors. Patients with CCA with HBV infection showed increased antigen processing and presentation (APC) and T cell infiltration, conferring a favorable prognosis compared with those without HBV infection. The characterization of extrahepatic CCA recommended the feasible application of vascular endothelial-derived growth factor inhibitors. Multiomics profiling presented distinctive molecular characteristics of the large bile duct and the small bile duct of intrahepatic CCA. The immune landscape further revealed diverse tumor immune microenvironments, suggesting immune subtypes C1 and C5 might benefit from immune checkpoint therapy. TCN1 was identified as a potential CCA prognostic biomarker, promoting cell growth by enhancing vitamin B12 metabolism. CONCLUSIONS: We characterized the proteogenomic landscape of 217 CCAs with 197 paired normal adjacent tissues and identified their subtypes and potential therapeutic targets. The multiomics analyses with other databases and some functional validations have indicated strategies regarding the clinical, biological, and therapeutic approaches to the management of CCA.
Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Proteogenómica , Humanos , Proteómica , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/patología , Conductos Biliares Intrahepáticos/patología , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/patología , Microambiente Tumoral , Proteínas Portadoras , Proteínas de Unión al ARNRESUMEN
Impaired differentiation of megakaryocytes constitutes the principal etiology of thrombocytopenia. The signal transducer and activator of transcription 3 (STAT3) is a crucial transcription factor in regulating megakaryocyte differentiation, yet the precise mechanism of its activation remains unclear. PALLD, an actin-associated protein, has been increasingly recognized for its essential functions in multiple biological processes. This study revealed that megakaryocyte/plateletspecific knockout of PALLD in mice exhibited thrombocytopenia due to diminished platelet biogenesis. In megakaryocytes, PALLD deficiency led to impaired proplatelet formation and polyploidization, ultimately weakening their differentiation for platelet production. Mechanistic studies demonstrated that PALLD bound to STAT3 and interacted with its DNA-binding domain (DBD) and Src homology 2 (SH2) domain via Immunoglobulin domain 3 (Ig3). Moreover, the absence of PALLD attenuated STAT3 Y705 phosphorylation and impeded STAT3 nuclear translocation. Based on the PALLD-STAT3 binding sequence, we designed a peptide C-P3, which can facilitate megakaryocyte differentiation and accelerate platelet production in vivo. In conclusion, this study highlights the pivotal role of PALLD in megakaryocyte differentiation and proposes a novel approach for treating thrombocytopenia by targeting the PALLD-STAT3 interaction.
RESUMEN
BACKGROUND: The activation of hepatic stellate cells (HSCs) has been emphasized as a leading event of the pathogenesis of liver cirrhosis, while the exact mechanism of its activation is largely unknown. Furthermore, the novel non-invasive predictors of prognosis in cirrhotic patients warrant more exploration. miR-541 has been identified as a tumor suppressor in hepatocellular carcinoma and a regulator of fibrotic disease, such as lung fibrosis and renal fibrosis. However, its role in liver cirrhosis has not been reported. METHODS: Real-time PCR was used to detect miR-541 expression in the liver tissues and sera of liver cirrhosis patients and in the human LX-2. Gain- and loss-of-function assays were performed to evaluate the effects of miR-541 on the activation of LX-2. Bioinformatics analysis and a luciferase reporter assay were conducted to investigate the target gene of miR-541. RESULTS: miR-541 was downregulated in the tissues and sera of patients with liver cirrhosis, which was exacerbated by deteriorating disease severity. Importantly, the lower expression of miR-541 was associated with more episodes of complications including ascites and hepatic encephalopathy, a shorter overall lifespan, and decompensation-free survival. Moreover, multivariate Cox's regression analysis verified lower serum miR-541 as an independent risk factor for liver-related death in cirrhotic patients (HR = 0.394; 95% CI: 0.164-0.947; P = 0.037). miR-541 was also decreased in LX-2 cells activated by TGF-ß and the overexpression of miR-541 inhibited the proliferation, activation and hydroxyproline secretion of LX-2 cells. JAG2 is an important ligand of Notch signaling and was identified as a direct target gene of miR-541. The expression of JAG2 was upregulated in the liver tissues of cirrhotic patients and was inversely correlated with miR-541 levels. A rescue assay further confirmed that JAG2 was involved in the function of miR-541 when regulating LX-2 activation and Notch signaling. CONCLUSIONS: Dysregulation of miR-541/JAG2 axis might be a as a new mechanism of liver fibrosis, and miR-541 could serve as a novel non-invasive biomarker and therapeutic targets for liver cirrhosis.
Asunto(s)
Células Estrelladas Hepáticas , Cirrosis Hepática , MicroARNs , Humanos , Proliferación Celular/genética , Células Estrelladas Hepáticas/metabolismo , Proteína Jagged-2/metabolismo , Proteína Jagged-2/farmacología , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , MicroARNs/genética , MicroARNs/metabolismo , PronósticoRESUMEN
The development of cost-efficient biochar adsorbent with a simple preparation method is essential to constructing efficient wastewater treatment system. Here, a low-cost waste carton biochar (WCB) prepared by a simple two-step carbonization was applied in efficiently removing Rhodamine B (RhB) in aqueous environment. The maximum ability of WCB for RhB adsorption was 222 mg/g, 6 and 10 times higher than both of rice straw biochar (RSB) and broadbean shell biochar (BSB), respectively. It was mainly ascribed to the mesopore structure (3.0-20.4 nm) of WCB possessing more spatial sites compared to RSB (2.2 nm) and BSB (2.4 nm) for RhB (1.4 nmâ1.1 nmâ0.6 nm) adsorption. Furthermore, external mass transfer (EMT) controlled mass transfer resistance (MTR) of the RhB sorption process by WCB which was fitted with the Langmuir model well. Meanwhile, the adsorption process was dominated by physisorption through van der Waals forces and π-π interactions. A mixture of three dyes in river water was well removed by using WCB. This work provides a straightforward method of preparing mesoporous biochar derived from waste carton with high-adsorption capacity for dye wastewater treatment.