Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Environ Manage ; 354: 120265, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38382441

RESUMEN

Giant habitat heterogeneity is an important factor contributing to the high species richness (SR) in karst forests. Yet, the driving factor behind the alterations in SR patterns during natural restoration remains unclear. In this study, we established the forest dynamics plots along the natural restoration sequence (including shrub-tree mixed forest stage (SC), secondary forest stage (SG) and old-growth forest sage (OG)) in degraded karst forests to compare the SR and the dependence on its components (including total community abundance, species abundance distribution (SAD), and conspecific spatial aggregation (CSA)) among stages of natural restoration. By evaluating the degree of contribution of the components to local SR and rarefied SR, we found that the SG exhibited the highest local SR, while the rarefied SR remained increasing along the restoration sequence after controlling the sample size. At SC-SG stage, SAD and CSA contributed negatively to the differences in SR, while abundance made a positive contribution to SR differences. At SG-OG, abundance contributed positively to the difference in SR at all scales, while SAD contributed negatively at small scales. No significant contribution of CSA was found at observed scales. In addition, local SR varied more significantly with PIE than with abundance. Our research emphasizes the importance of eliminating the influence of abundance on species richness in forest ecology and management, as well as the significance of separately evaluating the components that shape the diversity patterns.


Asunto(s)
Ecosistema , Bosques , Árboles , Ecología , Biodiversidad
2.
J Environ Manage ; 345: 118889, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37666128

RESUMEN

The impacts of natural restoration projects on soil microbial carbon (C) cycling functions have not been well recognized despite their wide implementation in the degraded karst areas of southwest China. In this study, metagenomic sequencing assays were conducted on functional genes and microorganisms related to soil C-cycling at three natural restoration stages (shrubbery, TG; secondary forest, SG; old-growth forest, OG) in the southeast of Guizhou Province, China. The aims were to investigate the changes in microbial potentials responsible for soil C cycling and the underlying driving forces. The natural restoration resulted in vegetation establishment at all three restoration stages, rendering alterations of soil microbial C cycle functions as indicated by metagenomic gene assays. When TG was restored into OG, the number and diversity of genes and microorganisms involved in soil C cycling remained unchanged, but their composition underwent significant shifts. Specifically, microbial potentials for soil C decomposition exhibited an increase driven by the collaborative efforts of plants and soils, while microbial potentials for soil C biosynthesis displayed an initial upswing followed by a subsequent decline which was primarily influenced by plants alone. In comparison to soil nutrients, it was determined that plant diversities served as the primary driving factor for the alterations in microbial carbon cycle potentials. Soil microbial communities involved in C cycling were predominantly attributed to Proteobacteria (31.87%-40.25%) and Actinobacteria (11.29%-26.07%), although their contributions varied across the three restoration stages. The natural restoration of degraded karst vegetation thus influences soil microbial C cycle functions by enhancing C decomposition potentials and displaying a nuanced pattern of biosynthesis potentials, primarily influenced by above-ground plants. These results provide valuable new insights into the regulation of soil C cycling during the restoration of degraded karst vegetation from genetic and microbial perspectives.


Asunto(s)
Ecosistema , Microbiota , Suelo , Microbiología del Suelo , Plantas , China , Carbono
3.
Front Microbiol ; 15: 1358137, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38562471

RESUMEN

Introduction: Paphiopedilum barbigerum is currently the rarest and most endangered species of orchids in China and has significant ornamental value. The mature seeds of P. barbigerum are difficult to germinate owing to the absence of an endosperm and are highly dependent on mycorrhizal fungi for germination and subsequent development. However, little is known about the regulation mechanisms of symbiosis and symbiotic germination of P. barbigerum seeds. Methods: Herein, transcriptomics and proteomics were used to explore the changes in the P. barbigerum seeds after inoculation with (FQXY019 treatment group) or without (control group) Epulorhiza sp. FQXY019 at 90 days after germination. Results: Transcriptome sequencing revealed that a total of 10,961 differentially expressed genes (DEGs; 2,599 upregulated and 8,402 downregulated) were identified in the control and FQXY019 treatment groups. These DEGs were mainly involved in carbohydrate, fatty acid, and amino acid metabolism. Furthermore, the expression levels of candidate DEGs related to nodulin, Ca2+ signaling, and plant lectins were significantly affected in P. barbigerum in the FQXY019 treatment groups. Subsequently, tandem mass tag-based quantitative proteomics was performed to recognize the differentially expressed proteins (DEPs), and a total of 537 DEPs (220 upregulated and 317 downregulated) were identified that were enriched in processes including photosynthesis, photosynthesis-antenna proteins, and fatty acid biosynthesis and metabolism. Discussion: This study provides novel insight on the mechanisms underlying the in vitro seed germination and protocorm development of P. barbigerum by using a compatible fungal symbiont and will benefit the reintroduction and mycorrhizal symbiotic germination of endangered orchids.

4.
Bioresour Technol ; 387: 129694, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37598802

RESUMEN

This study investigated the impact of mature compost input on compost quality, greenhouse gases (GHGs, i.e. methane and nitrous oxide) and ammonia emissions during chicken manure and rice husk chicken manure co-composting. The experiment used different volumes of mature compost: 10% (T1), 20% (T2), and 30% (T3) to replace rice husk chicken manure. Results showed that mature compost enhanced compost maturity by promoting the activities of Bacillus, Caldicoprobacter, Thermobifida, Pseudogracilibacillus, Brachybacterium, and Sinibacillus. Compared to CK, T1, T2, and T3 reduced NH3 emission by 32.07%, 33.64%, and 56.12%, and mitigated 14.97%, 16.57%, and 26.18% of total nitrogen loss, respectively. Additionally, T2 and T3 reduced CH4 emission by 40.98% and 62.24%, respectively. The N2O emissions were positive correlation with Lactobacillus, Pseudogracilibacillus and ammonium nitrogen (p < 0.05), while T2 reducing total greenhouse effects. Therefore, replacing rice husk chicken manure with 20% mature compost is an efficient and promising approach for composting.


Asunto(s)
Bacillaceae , Compostaje , Oryza , Animales , Gases , Pollos , Estiércol , Nitrógeno
5.
Artículo en Inglés | MEDLINE | ID: mdl-36834281

RESUMEN

Composting is a promising technology for treating organic solid waste. However, greenhouse gases (methane and nitrous oxide) and odor emissions (ammonia, hydrogen sulfide, etc.) during composting are practically unavoidable, leading to severe environmental problems and poor final compost products. The optimization of composting conditions and the application of additives have been considered to mitigate these problems, but a comprehensive analysis of the influence of these methods on gaseous emissions during composting is lacking. Thus, this review summarizes the influence of composting conditions and different additives on gaseous emissions, and the cost of each measure is approximately evaluated. Aerobic conditions can be achieved by appropriate process conditions, so the contents of CH4 and N2O can subsequently be effectively reduced. Physical additives are effective regulators to control anaerobic gaseous emissions, having a large specific surface area and great adsorption performance. Chemical additives significantly reduce gaseous emissions, but their side effects on compost application must be eliminated. The auxiliary effect of microbial agents is not absolute, but is closely related to the dosage and environmental conditions of compost. Compound additives can reduce gaseous emissions more efficiently than single additives. However, further study is required to assess the economic viability of additives to promote their large-scale utilization during composting.


Asunto(s)
Compostaje , Gases de Efecto Invernadero , Gases/análisis , Compostaje/métodos , Amoníaco/análisis , Gases de Efecto Invernadero/análisis , Residuos Sólidos/análisis , Óxido Nitroso/análisis , Suelo/química
6.
Front Plant Sci ; 14: 1267759, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38098793

RESUMEN

Enzyme stoichiometry can reflect the resource limitation of soil microbial metabolism, and research on the relationships between plants and resource limitation in Karst Microhabitats is scarcely investigated. To clarify the extracellular enzyme stoichiometry characteristics in soil across different karst microhabitats and how the Rhododendron pudingense adapts to nutrient restrictions, plot investigation experiments were set up in Zhenning County, Qinglong County, and Wangmo County of Guizhou Province which included total three karst microhabitats, i.e., soil surface (SS), rock gully (RG), and rock surface (RS), by analyzing he rhizosphere soil nutrient, extracellular enzyme activity, and nutrient content of R. pudingense. The findings indicated that all karst microenvironments experienced varying levels of nitrogen (N) limitation, with the order of N limitation being as follows: SS > RG > RS. Notably, there were significant discrepancies in N content among different plant organs (p< 0.05), with the sequence of N content as follows: leaf > stem > root. However, no significant differences were observed in nutrient content within the same organ across different microenvironments (p > 0.05). A noteworthy discovery was the significant allometric growth relationship between C-P in various organs (p< 0.05), while roots and stems exhibited a significant allometric growth relationship between N-P (p< 0.05). The study highlighted the substantial impact of Total Nitrogen (TN) and N-acquiring enzymes (NAE) on nutrient allocation within the components of R. pudingense. Overall, the research demonstrated that N was the primary limiting factor in the study area's soil, and R. pudingense's nutrient allocation strategy was closely associated with N limitations in the karst microenvironment. Specifically, the plant prioritized allocating its limited N resources to its leaves, ensuring its survival. This investigation provided valuable insights into how plants adapt to nutrient restrictions and offered a deeper understanding of soil-plant interactions in karst ecosystems.

7.
Chemosphere ; 313: 137410, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36455661

RESUMEN

Advanced biosorbents increasingly attract attention for their application in environment remediation. Here, a facile one-step approach to alkaline ball milling was used to synthesize a porous peanut hull biosorbent without heating. The alkaline ball-milled peanut-hull (ABP) biosorbent was characterized for its ability to remove Congo red (CR), titan yellow (TY), and methyl violet (MV) from aqueous solutions. ABP processed abundant O-containing functional groups and developed porosity, resulting in maximum sorption capacities of 4864.4 (CR), 455.9 (TY), and 126.1 (MV) mg g-1. Freundlich isotherm and PSO kinetic models best fit the anionic dye's (CR and TY) adsorption by ABP, indicating multiple mechanisms might control the adsorption process. Freundlich and PFO kinetics models best described cationic MV adsorption by ABP, suggesting the adsorption of cationic dye could also be governed by multi-mechanisms but less heterogeneous than that of anionic dye. The results suggest that alkaline ball-milling is promising approach to converting biomass into advanced biosorbents for organic dyes, especially anionic ones.


Asunto(s)
Arachis , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Colorantes , Rojo Congo , Adsorción , Cinética , Agua , Violeta de Genciana , Concentración de Iones de Hidrógeno
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 273: 120949, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35183857

RESUMEN

Soil organic matter (SOM) is a key index for evaluating soil fertility and plays a vital role in the terrestrial carbon cycle. Visible and near-infrared (Vis-NIR) spectroscopy is an effective method for determining soil properties and is often used to predict SOM content. However, the key prerequisite for effective prediction of SOM content by Vis-NIR spectroscopy lies in the selection of appropriate preprocessing methods and effective data mining techniques. Therefore, in this study, six commonly used spectral preprocessing methods and effective characteristic band selection methods were selected to process the spectrum to predict SOM content. This study aims to determine a stable spectral preprocessing method and explore the predictive performance of different characteristic band selection methods. The results showed that: (i) The first derivative (FD) is the most stable spectral preprocessing method that can effectively improve the spectral characteristic information and the prediction effect of the model. (ii) The prediction effect of SOM content based on characteristic band selection methods is generally better than the full-spectra data. (iii) The precision of FD preprocessing spectrum combined with successive projections algorithm (SPA) in the partial least square regression prediction model of SOM content is the best. (iv) Although the prediction effect of the model based on the optimal band combination algorithm is slightly lower than that of SPA, it shows stable prediction performance, which provides a feasible method for SOM content prediction. In summary, the characteristic band selection method combined with FD can significantly improve the prediction accuracy of SOM content.


Asunto(s)
Suelo , Espectroscopía Infrarroja Corta , Algoritmos , Análisis de los Mínimos Cuadrados , Suelo/química , Espectroscopía Infrarroja Corta/métodos
9.
Chemosphere ; 309(Pt 1): 136610, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36181850

RESUMEN

New classes of biosorbents are needed for various environment remediation applications. Thus, a facile and benign approach to synthesize porous biosorbents was developed using acidic or alkaline one-step ball milling of hickory wood biomass (AcBH and AlBH, respectively) without any external heat treatment, and their properties were compared. AcBH and AlBH were richer in O-containing functional groups, had enhanced porous structure and greater ability to remove crystal violet (CV, 476.4 mg g-1) and Congo red (CR, 221.8 mg g-1) dyes from aqueous solution, respectively, relative to hickory wood ball milled at neutral pH. Freundlich isotherm and pseudo second order kinetic models best fitted CR and CV adsorption onto biosorbents, indicating a mainly surface complexation adsorption mechanism. Further, both sorbents exhibited excellent stability and dye adsorption reusability. These results demonstrate that acidic and alkaline one-step ball milling is a facile and efficient approach for converting wood biomass into environmentally friendly biosorbents.


Asunto(s)
Colorantes , Contaminantes Químicos del Agua , Rojo Congo , Violeta de Genciana , Madera/química , Contaminantes Químicos del Agua/análisis , Agua/química
10.
J Hazard Mater ; 378: 120702, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31202064

RESUMEN

Increasing environmental concerns about organic waste in paper mill effluents demand alternative wastewater management technology. We reported novel activation of fulvic acid-like in paper mill effluents using hydrogen peroxide (H2O2) as oxidizer and titanium oxide (TiO2) as catalyst. Spectroscopic characteristics of fulvic acid-like in paper mill effluents before and after activation (PFA and PFA-Os, respectively) were compared with a benchmark fulvic acid extracted from leonardite (LFA). Results indicated that PFA-Os exhibited less lignin structures, more functional groups and lower molecular weight than PFA, sharing much similarity with LFA. Among PFA-Os with varying degrees of oxidation, PFA-O-3 activated with 1:2 vol ratio of paper mill effluent and 30% H2O2 for 20 min digestion at 90 °C stands out to be the optimal for further examination of its biological activity. Bioassays with rice seed/seedling indicated that applications of LFA at 2-5 mg-C/L and PFA-O-3 at 60-100 mg-C/L significantly increased rice seed germination rate and seedling growth under salt stress imposed with 100 mM NaCl. The mechanism was mainly through reduced oxidative damage via activation of antioxidative enzymes and lipid peroxidation. This study provides the needed technical basis of safer and cleaner technologies for innovative management of paper mill effluents.


Asunto(s)
Benzopiranos/química , Peróxido de Hidrógeno/química , Residuos Industriales/análisis , Papel , Estrés Salino , Titanio/química , Catálisis , Germinación , Lignina/química , Minerales/química , Oryza/química , Oxidación-Reducción , Sales (Química)/química , Plantones , Eliminación de Residuos Líquidos , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA