Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 366: 121747, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38991345

RESUMEN

Megacities face significant pollution challenges, particularly the elevated levels of heavy metals (HMs) in particulate matter (PM). Despite the advent of interdisciplinary and advanced methods for HM source analysis, integrating and applying these approaches to identify HM sources in PM remains a hurdle. This study employs a year-long daily sampling dataset for PM1 and PM1-10 to examine the patterns of HM concentrations under hazy, clean, and rainy conditions in Hangzhou City, aiming to pinpoint the primary sources of HMs in PM. Contrary to other HMs that remained within acceptable limits, the annual average concentrations of Cd and Ni were found to be 20.6 ± 13.6 and 46.9 ± 34.8 ng/m³, respectively, surpassing the World Health Organization's limits by 4.1 and 1.9 times. Remarkably, Cd levels decreased on hazy days, whereas Ni levels were observed to rise on rainy days. Using principal component analysis (PCA), enrichment factor (EF), and backward trajectory analysis, Fe, Mn, Cu, and Zn were determined to be primarily derived from traffic emissions, and there was an interaction between remote migration and local emissions in haze weather. Isotope analysis reveals that Pb concentrations in the Hangzhou region were primarily influenced by emissions from unleaded gasoline, coal combustion, and municipal solid waste incineration, with additional impact from long-range transport; it also highlights nuanced differences between PM1 and PM1-10. Pb isotope and PCA analyses indicate that Ni primarily stemmed from waste incineration emissions. This explanation accounts for the observed higher Ni concentrations on rainy days. Backward trajectory cluster analysis revealed that southern airflows were the primary source of high Cd concentrations on clean days in Hangzhou City. This study employs a multifaceted approach and cross-validation to successfully delineate the sources of HMs in Hangzhou's PM. It offers a methodology for the precise and reliable analysis of complex HM sources in megacity PM.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Metales Pesados , Material Particulado , Material Particulado/análisis , Metales Pesados/análisis , Contaminantes Atmosféricos/análisis , China , Emisiones de Vehículos/análisis
2.
J Hazard Mater ; 478: 135424, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39116749

RESUMEN

A critical consideration in the application of phytoremediation to remediate sludge soil contaminated with heavy metals is the potential for leaching risks that prevail prior to the efficient uptake of these metals by plants. The most cost-effective method is to use heavy metal stabilizers with selective adsorption. A novel amide-based COF material (COF-TH) has been synthesized as a heavy metal stabilizer for Pb. COF-TH exhibits significant selectivity for Pb in five-metal-mixed solutions, with a distribution coefficient KD as high as 3279 mL·g-1, which was more than 7.3 times that of other heavy metals. The maximum adsorption capacity of COF-TH for Pb was 189 mg·g-1. The adsorption fitted Langmuir model and intra-particle diffusion model, and satisfied pseudo-second-order kinetic model. The excellent selectivity and adsorption performance originate from the complexation between abundant amide groups and Pb ions. Pot experiments and leaching assays confirm that COF-TH decreased Pb leachate concentrations by 77.8 % without significantly decreasing total phytoextracted amounts of other heavy metals, due to the high selectivity of COF-TH to Pb. Additionally, its positive impact on plant growth and microbial diversity makes it a promising soil remediation agent. This investigation offers a novel approach to mitigate the leaching risk of a specific heavy metal Pb during sludge land application by integrating soil phytoremediation with stabilization techniques.

3.
Environ Sci Pollut Res Int ; 30(12): 33598-33608, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36484942

RESUMEN

Land use is an effective way to reduce carbon emission in the recycling process of municipal sludge compost; meanwhile, heavy metals (HMs) in the sludge can be phytoextracted by ornamental plants. As an eco-friendly soil amendment, citric acid (CA) has been reported to be of great potential aid to phytoremediation, and its effect on ryegrass (Lolium perenne L.) extraction of HMs (Zn, Ni, Pb, Cu, and Cd) from municipal sewage sludge compost-amended (MSSC) soils has been investigated through pot experiments in the study. The growth of ryegrass was significantly promoted under 2 and 4 mmol kg-1 CA treatments. The concentrations of HMs in MSSC soil after 45-day planting were significantly reduced ([Formula: see text]), and they were further reduced except for Cu while CA treated. The acid-extractable fraction of HMs in the soil was increased significantly as CA treated, and further improvement could be found when CA dose increased, which was due to the decreased soil pH and the complexation of CA with metal ions. The phytoremediation factor (PRF) was proposed to assess the phytoremediation efficiency, which was obtained as a ratio of the product of the biomass and metal concentration of plant shoot between the CA-treated group and the control group. When the CA dose was 6 mmol kg-1, the average PRF of five heavy metals reached 2.29, and Cd was the highest (3.72), demonstrating that CA had great promotion on phytoremediation of heavy metals. This study made a contribution to the research of phytoremediation in sludge land use by demonstrating ryegrass as an ideal bioaccumulator for heavy metals, especially for Cd.


Asunto(s)
Compostaje , Lolium , Metales Pesados , Contaminantes del Suelo , Aguas del Alcantarillado , Suelo , Cadmio , Ácido Cítrico , Contaminantes del Suelo/análisis , Metales Pesados/análisis
4.
Sci Total Environ ; 854: 158539, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36075407

RESUMEN

The accumulation and volatilization of Se by algae in surface water are important parts of the biogeochemical cycle of selenium but are also variable and complex. Experiments with 5-8 day of exposure under various temperatures, solution pH values, lighting regimes, and different initial Se concentrations were carried out to study the change in Se accumulation and volatilization behavior of algae. The study showed that algae accumulated and volatilized more Se under harsher environments, such as a lower pH, a shorter lighting time, and a higher Se load. The maximum average daily volatilization rate of Se was 234 ± 23 µg Se (g algae·d)-1, much greater than the values of previous studies. Therefore, in some Se-polluted water environments, when the pH of lakes is acidic, Se emissions to the atmosphere are much higher than currently estimated. Both the accumulation rate (Raccu) and volatilization rate (Rvol) of Se by algae were significantly negatively correlated with final pH, final OD, and residual Se in solution (Cres). Moreover, multiple linear regression equations were used to estimate the rates of Se accumulation and volatilization. This study provides theoretical basis data to quantify the contribution of selenium metabolism by algae to selenium biogeochemistry and a technical reference for the treatment of Se-containing wastewater.


Asunto(s)
Microalgas , Selenio , Ácido Selenioso , Microalgas/metabolismo , Selenio/metabolismo , Volatilización , Plantas/metabolismo , Lagos , Agua
5.
Toxics ; 11(1)2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36668769

RESUMEN

The development of phytoremediation by garden plants is an effective way to deal with the dilemma of municipal sewage sludge disposal. In this study, two ornamental plants were used as phytoremediation plants to rehabilitate heavy-metal-contaminated municipal sewage sludge in field experiments, and the role of exogenous phytohormone IAA was also tested. Ornamental plants Loropetalum chinense var. rubrum (L. rubrum) and Rhododendron pulchrum (R. pulchrum) adapted well to the artificial soil made of municipal sewage sludge, and the concentrations of Cu, Zn, Pb, and Ni were decreased by 7.29, 261, 20.2, and 11.9 mg kg−1, respectively, in the soil planted with L. rubrum, and 7.60, 308, 50.1, and 17.7 mg kg−1, respectively, in the soil planted with R. pulchrum, accounted for 11−37% of the total amounts and reached significant levels (p < 0.05), except Cd. The concentration of Pb in all parts of the two ornamental plants was increased, as well as most heavy metals in L. rubrum root. As a result, three months after transplant, the phyto-extraction amounts in L. rubrum were 397, 10.9, and 1330 µg for Ni, Cd, and Pb, respectively, increased by 233% to 279%. The phyto-extraction amount in R. pulchrum were 1510, 250, and 237 µg for Zn, Pb, and Cu, respectively, increased by 143% to 193%. These results indicated a potential to remediate heavy metals of the two ornamental plants, especially L. rubrum. The results of correlation analysis implied that the interaction of heavy metals in the plant itself played an important role in the uptake of heavy metals. This seemed to explain why applying IAA in the experiment had little effect on plant growth and phytoremediation of heavy metals. This study provided a green and feasible idea for the proper disposal of municipal sewage sludge.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA