Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Microbiol ; 24(1): 324, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39243004

RESUMEN

Acinetobacter species such as A. venetianus and A. guillouiae have been studied for various biotechnology applications, including bioremediation of recalcitrant and harmful environmental contaminants, as well as bioengineering of enzymes and diagnostic materials. Bacteria used in biotechnology are often combined with other microorganisms in mixtures to formulate efficacious commercial products. However, if the mixture contained a closely related Acinetobacter pathogen such as A. baumannii (Ab), it remains unclear whether the survival and virulence of Ab would be masked or augmented. This uncertainty poses a challenge in ensuring the safety of such biotechnology products, since Ab is one of the most significant pathogens for both hospital and community -acquired infections. This research aimed to investigate the growth and virulence of Ab within a mixture of 11 bacterial species formulated as a mock microbial mixture (MM). Growth challenges with environmental stressors (i.e., temperature, pH, sodium, iron, and antibiotics) revealed that Ab could thrive under diverse conditions except in the presence of ciprofloxacin. When cultured alone, Ab exhibited significantly more growth in the presence of almost all the environmental stressors than when it was co-incubated with the MM. During the exposure of A549 lung epithelial cells to the MM, Ab growth was stimulated compared to that in standard mammalian culture media. Cytotoxicity caused by Ab was suppressed in the presence of the MM. Lymphocytes were significantly reduced in mice exposed to Ab with or without MM via intravenous injection. The levels of the splenic cytokines IL-1α, IL-1ß, MCP-1, and MIP-1α were significantly reduced 24 h after exposure to Ab + MM. This study demonstrated that the presence of the MM marginally but significantly reduced the growth and virulence of Ab, which has implications for the safety of mixtures of microorganisms for biotechnological applications. Furthermore, these findings expand our understanding of the virulence of Ab during host-pathogen interactions.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Animales , Acinetobacter baumannii/patogenicidad , Acinetobacter baumannii/crecimiento & desarrollo , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/genética , Virulencia , Ratones , Humanos , Infecciones por Acinetobacter/microbiología , Células A549 , Antibacterianos/farmacología , Femenino , Citocinas/metabolismo , Viabilidad Microbiana/efectos de los fármacos
2.
Microorganisms ; 10(7)2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35889128

RESUMEN

Bacillus cereus is a spore-forming ubiquitous bacterium notable as a food poisoning agent. Detection of B. cereus spores using selective media is laborious and non-specific. Herein, the quantitative detection of B. cereus spores was investigated with commercial antibodies and published aptamer sequences. Several detection reagents were screened for affinity to Bacillus collagen-like protein A (BclA), an abundant exosporium glycoprotein. Sensitivity and selectivity toward B. cereus spores were tested using immunoassays and multi-analyte profiling (xMAP). A recombinant antibody developed in llama against BclA protein showed B. cereus spore selectivity and sensitivity between 102 and 105 spores/mL using xMAP. DNA aptamer sequences demonstrated sensitivity from 103 to 107 spores/mL and no cross-reaction to B. megaterium and B. subtilis. Selectivity for B. cereus spores was also demonstrated in a mixture of several diverse microorganisms and within a food sample with no compromise of sensitivity. As proof of concept for multiplexed measurement of human pathogens, B. cereus and three other microorganisms, E. coli, P. aeruginosa, and S. cerevisiae, were simultaneously detected using xMAP. These data support the development of a rapid, sensitive, and selective system for quantitation of B. cereus spores and multiplexed monitoring of human pathogens in complex matrices.

3.
Hybridoma (Larchmt) ; 31(4): 240-5, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22894776

RESUMEN

Thiol 2-mercaptoethanol (2-ME) has been reported to enhance growth in lymphocytes by various investigators. Some have used 50 µM for growing hybridomas in vitro. Concentrations of 50 and 5 µM in 5% FBS supplemented D-MEM were tested to determine their effects on the growth of 5 monoclonal antibody secreting mouse B cell hybridomas and the myeloma Sp2/O-Ag14. Viability after 24 and 48 h exposure was determined by Trypan blue exclusion. Analysis by one-way ANOVA confirmed that 50 µM 2-ME has a significant negative impact (p<0.05) on hybridoma as well as on myeloma growth, whereas no significant difference (p>0.05) between the control and the 5 µM treatment group was observed after 48 h. Also, no significant difference (p>0.05) in the mortality rates between the control and the treatment groups was found. When combined with the observed protracted doubling time in the 50 µM treatment group, these results indicate that the impact of 2-ME is due to inhibition of cell division. The degree of inhibition was observed to vary between the different hybridomas as well as the myeloma. Although the impact of 2-ME on mitosis has been demonstrated in organisms such as the ciliated protozoan Tetrahymena pyriformis, the yeast Saccharomycess cerevisiae, and the egg of the echinoid the sand dollar Dendraster excentricus, this work demonstrates for the first time that 2-ME impedes the growth of mouse B cell hybridomas. We conclude that adding 2-ME to mouse B cell hybridoma growth media may not be beneficial.


Asunto(s)
Anticuerpos Monoclonales de Origen Murino/biosíntesis , Antioxidantes/farmacología , División Celular/efectos de los fármacos , Mercaptoetanol/farmacología , Análisis de Varianza , Animales , Linfocitos B/efectos de los fármacos , Linfocitos B/fisiología , Supervivencia Celular/efectos de los fármacos , Hibridomas/efectos de los fármacos , Hibridomas/fisiología , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA