Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nature ; 600(7888): 339-343, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34759323

RESUMEN

Human epidermal growth factor receptor 2 (HER2) and HER3 form a potent pro-oncogenic heterocomplex1-3 upon binding of growth factor neuregulin-1ß (NRG1ß). The mechanism by which HER2 and HER3 interact remains unknown in the absence of any structures of the complex. Here we isolated the NRG1ß-bound near full-length HER2-HER3 dimer and, using cryo-electron microscopy, reconstructed the extracellulardomain module, revealing unexpected dynamics at the HER2-HER3 dimerization interface. We show that the dimerization arm of NRG1ß-bound HER3 is unresolved because the apo HER2 monomer does not undergo a ligand-induced conformational change needed to establish a HER3 dimerization arm-binding pocket. In a structure of the oncogenic extracellular domain mutant HER2(S310F), we observe a compensatory interaction with the HER3 dimerization arm that stabilizes the dimerization interface. Both HER2-HER3 and HER2(S310F)-HER3 retain the capacity to bind to the HER2-directed therapeutic antibody trastuzumab, but the mutant complex does not bind to pertuzumab. Our structure of the HER2(S310F)-HER3-NRG1ß-trastuzumab Fab complex reveals that the receptor dimer undergoes a conformational change to accommodate trastuzumab. Thus, similar to oncogenic mutations, therapeutic agents exploit the intrinsic dynamics of the HER2-HER3 heterodimer. The unique features of a singly liganded HER2-HER3 heterodimer underscore the allosteric sensing of ligand occupancy by the dimerization interface and explain why extracellular domains of HER2 do not homo-associate via a canonical active dimer interface.


Asunto(s)
Microscopía por Crioelectrón , Neurregulina-1/química , Multimerización de Proteína , Receptor ErbB-2/química , Receptor ErbB-3/química , Regulación Alostérica , Anticuerpos Monoclonales Humanizados/química , Anticuerpos Monoclonales Humanizados/ultraestructura , Sitios de Unión , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Modelos Moleculares , Mutación , Neurregulina-1/ultraestructura , Oncogenes/genética , Estabilidad Proteica , Receptor ErbB-2/ultraestructura , Receptor ErbB-3/ultraestructura , Trastuzumab/química , Trastuzumab/ultraestructura
3.
IUBMB Life ; 71(6): 706-720, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31046201

RESUMEN

Intercellular communication governs complex physiological processes ranging from growth and development to the maintenance of cellular and organ homeostasis. In nearly all metazoans, receptor tyrosine kinases (RTKs) are central players in these diverse and fundamental signaling processes. Aberrant RTK signaling is at the root of many developmental diseases and cancers and it remains a key focus of targeted therapies, several of which have achieved considerable success in patients. These therapeutic advances in targeting RTKs have been propelled by numerous genetic, biochemical, and structural studies detailing the functions and molecular mechanisms of regulation and activation of RTKs. The latter in particular have proven to be instrumental for the development of new drugs, selective targeting of mutant forms of RTKs found in disease, and counteracting ensuing drug resistance. However, to this day, such studies have not yet yielded high-resolution structures of intact RTKs that encompass the extracellular and intracellular domains and the connecting membrane-spanning transmembrane domain. Technically challenging to obtain, these structures are instrumental to complete our understanding of the mechanisms by which RTKs are activated by extracellular ligands and of the effect of pathological mutations that do not directly reside in the catalytic sites of tyrosine kinase domains. In this review, we focus on the recent progress toward obtaining such structures and the insights already gained by structural studies of the subdomains of the receptors that belong to the epidermal growth factor receptor, insulin receptor, and platelet-derived growth factor receptor RTK families. © 2019 IUBMB Life, 71(6):706-720, 2019.


Asunto(s)
Resistencia a Medicamentos/genética , Conformación Proteica , Proteínas Tirosina Quinasas Receptoras/genética , Dominio Catalítico , Comunicación Celular/genética , Humanos , Mutación/genética , Neoplasias/genética , Proteínas Tirosina Quinasas Receptoras/química , Proteínas Tirosina Quinasas Receptoras/ultraestructura , Transducción de Señal/genética
4.
PLoS Pathog ; 12(8): e1005815, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27560183

RESUMEN

An optimal HIV vaccine should induce broadly neutralizing antibodies (bnAbs) that neutralize diverse viral strains and subtypes. However, potent bnAbs develop in only a small fraction of HIV-infected individuals, all contain rare features such as extensive mutation, insertions, deletions, and/or long complementarity-determining regions, and some are polyreactive, casting doubt on whether bnAbs to HIV can be reliably induced by vaccination. We engineered two potent VRC01-class bnAbs that minimized rare features. According to a quantitative features frequency analysis, the set of features for one of these minimally mutated bnAbs compared favorably with all 68 HIV bnAbs analyzed and was similar to antibodies elicited by common vaccines. This same minimally mutated bnAb lacked polyreactivity in four different assays. We then divided the minimal mutations into spatial clusters and dissected the epitope components interacting with those clusters, by mutational and crystallographic analyses coupled with neutralization assays. Finally, by synthesizing available data, we developed a working-concept boosting strategy to select the mutation clusters in a logical order following a germline-targeting prime. We have thus developed potent HIV bnAbs that may be more tractable vaccine goals compared to existing bnAbs, and we have proposed a strategy to elicit them. This reductionist approach to vaccine design, guided by antibody and antigen structure, could be applied to design candidate vaccines for other HIV bnAbs or protective Abs against other pathogens.


Asunto(s)
Vacunas contra el SIDA/inmunología , Anticuerpos Neutralizantes/inmunología , Diseño de Fármacos , Anticuerpos Anti-VIH/inmunología , VIH-1/inmunología , Secuencia de Aminoácidos , Anticuerpos Neutralizantes/genética , Anticuerpos Anti-VIH/genética , Infecciones por VIH/inmunología , Ensayos Analíticos de Alto Rendimiento , Humanos , Modelos Moleculares , Mutación
6.
Nature ; 480(7377): 336-43, 2011 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-22113616

RESUMEN

Variable regions 1 and 2 (V1/V2) of human immunodeficiency virus-1 (HIV-1) gp120 envelope glycoprotein are critical for viral evasion of antibody neutralization, and are themselves protected by extraordinary sequence diversity and N-linked glycosylation. Human antibodies such as PG9 nonetheless engage V1/V2 and neutralize 80% of HIV-1 isolates. Here we report the structure of V1/V2 in complex with PG9. V1/V2 forms a four-stranded ß-sheet domain, in which sequence diversity and glycosylation are largely segregated to strand-connecting loops. PG9 recognition involves electrostatic, sequence-independent and glycan interactions: the latter account for over half the interactive surface but are of sufficiently weak affinity to avoid autoreactivity. The structures of V1/V2-directed antibodies CH04 and PGT145 indicate that they share a common mode of glycan penetration by extended anionic loops. In addition to structurally defining V1/V2, the results thus identify a paradigm of antibody recognition for highly glycosylated antigens, which-with PG9-involves a site of vulnerability comprising just two glycans and a strand.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Especificidad de Anticuerpos/inmunología , Anticuerpos Anti-VIH/inmunología , Proteína gp120 de Envoltorio del VIH/química , Proteína gp120 de Envoltorio del VIH/inmunología , VIH-1/química , VIH-1/inmunología , Vacunas contra el SIDA/química , Vacunas contra el SIDA/inmunología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Anticuerpos Neutralizantes/química , Afinidad de Anticuerpos/inmunología , Complejo Antígeno-Anticuerpo/química , Complejo Antígeno-Anticuerpo/inmunología , Sitios de Unión de Anticuerpos/inmunología , Secuencia Conservada , Cristalografía por Rayos X , Epítopos/química , Epítopos/inmunología , Glicopéptidos/química , Glicopéptidos/inmunología , Glicosilación , Anticuerpos Anti-VIH/química , Enlace de Hidrógeno , Evasión Inmune , Modelos Moleculares , Datos de Secuencia Molecular , Polisacáridos/química , Polisacáridos/inmunología , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína
7.
PLoS Pathog ; 9(5): e1003342, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23658524

RESUMEN

New broad and potent neutralizing HIV-1 antibodies have recently been described that are largely dependent on the gp120 N332 glycan for Env recognition. Members of the PGT121 family of antibodies, isolated from an African donor, neutralize ∼70% of circulating isolates with a median IC50 less than 0.05 µg ml(-1). Here, we show that three family members, PGT121, PGT122 and PGT123, have very similar crystal structures. A long 24-residue HCDR3 divides the antibody binding site into two functional surfaces, consisting of an open face, formed by the heavy chain CDRs, and an elongated face, formed by LCDR1, LCDR3 and the tip of the HCDR3. Alanine scanning mutagenesis of the antibody paratope reveals a crucial role in neutralization for residues on the elongated face, whereas the open face, which accommodates a complex biantennary glycan in the PGT121 structure, appears to play a more secondary role. Negative-stain EM reconstructions of an engineered recombinant Env gp140 trimer (SOSIP.664) reveal that PGT122 interacts with the gp120 outer domain at a more vertical angle with respect to the top surface of the spike than the previously characterized antibody PGT128, which is also dependent on the N332 glycan. We then used ITC and FACS to demonstrate that the PGT121 antibodies inhibit CD4 binding to gp120 despite the epitope being distal from the CD4 binding site. Together, these structural, functional and biophysical results suggest that the PGT121 antibodies may interfere with Env receptor engagement by an allosteric mechanism in which key structural elements, such as the V3 base, the N332 oligomannose glycan and surrounding glycans, including a putative V1/V2 complex biantennary glycan, are conformationally constrained.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Antígenos CD4 , Glicoproteínas , Proteína gp120 de Envoltorio del VIH , VIH-1 , Regulación Alostérica/genética , Regulación Alostérica/inmunología , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/química , Anticuerpos Antivirales/genética , Anticuerpos Antivirales/inmunología , Sitios de Unión de Anticuerpos , Antígenos CD4/química , Antígenos CD4/genética , Antígenos CD4/inmunología , Cristalografía por Rayos X , Epítopos/química , Epítopos/genética , Epítopos/inmunología , Glicoproteínas/química , Glicoproteínas/genética , Glicoproteínas/inmunología , Células HEK293 , Proteína gp120 de Envoltorio del VIH/química , Proteína gp120 de Envoltorio del VIH/genética , Proteína gp120 de Envoltorio del VIH/inmunología , VIH-1/genética , VIH-1/inmunología , Humanos , Cadenas Pesadas de Inmunoglobulina/química , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/inmunología , Estructura Cuaternaria de Proteína
8.
bioRxiv ; 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38260342

RESUMEN

Human Epidermal growth factor Receptor 4 (HER4 or ERBB4) carries out essential functions in the development and maintenance of the cardiovascular and nervous systems. HER4 activation is regulated by a diverse group of extracellular ligands including the neuregulin (NRG) family and betacellulin (BTC), which promote HER4 homodimerization or heterodimerization with other HER receptors. Important cardiovascular functions of HER4 are exerted via heterodimerization with its close homolog and orphan receptor, HER2. To date structural insights into ligand-mediated HER4 activation have been limited to crystallographic studies of HER4 ectodomain homodimers in complex with NRG1ß. Here we report cryo-EM structures of near full-length HER2/HER4 heterodimers and full-length HER4 homodimers bound to NRG1ß and BTC. We show that the structures of the heterodimers bound to either ligand are nearly identical and that in both cases the HER2/HER4 heterodimer interface is less dynamic than those observed in structures of HER2/EGFR and HER2/HER3 heterodimers. In contrast, structures of full-length HER4 homodimers bound to NRG1ß and BTC display more large-scale dynamics mirroring states previously reported for EGFR homodimers. Our structures also reveal the presence of multiple glycan modifications within HER4 ectodomains, modeled for the first time in HER receptors, that distinctively contribute to the stabilization of HER4 homodimer interfaces over those of HER2/HER4 heterodimers.

9.
Elife ; 122024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38498590

RESUMEN

Human Epidermal growth factor Receptor 4 (HER4 or ERBB4) carries out essential functions in the development and maintenance of the cardiovascular and nervous systems. HER4 activation is regulated by a diverse group of extracellular ligands including the neuregulin (NRG) family and betacellulin (BTC), which promote HER4 homodimerization or heterodimerization with other HER receptors. Important cardiovascular functions of HER4 are exerted via heterodimerization with its close homolog and orphan receptor, HER2. To date structural insights into ligand-mediated HER4 activation have been limited to crystallographic studies of HER4 ectodomain homodimers in complex with NRG1ß. Here, we report cryo-EM structures of near full-length HER2/HER4 heterodimers and full-length HER4 homodimers bound to NRG1ß and BTC. We show that the structures of the heterodimers bound to either ligand are nearly identical and that in both cases the HER2/HER4 heterodimer interface is less dynamic than those observed in structures of HER2/EGFR and HER2/HER3 heterodimers. In contrast, structures of full-length HER4 homodimers bound to NRG1ß and BTC display more large-scale dynamics mirroring states previously reported for EGFR homodimers. Our structures also reveal the presence of multiple glycan modifications within HER4 ectodomains, modeled for the first time in HER receptors, that distinctively contribute to the stabilization of HER4 homodimer interfaces over those of HER2/HER4 heterodimers.


Asunto(s)
Receptor ErbB-2 , Transducción de Señal , Humanos , Receptor ErbB-2/metabolismo , Glicosilación , Ligandos , Receptor ErbB-4/metabolismo , Proteínas Portadoras/metabolismo
10.
Radiol Imaging Cancer ; 6(2): e230082, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38551406

RESUMEN

Purpose To compare quantitative measures of tumor metabolism and perfusion using fluorine 18 (18F) fluorodeoxyglucose (FDG) dedicated breast PET (dbPET) and breast dynamic contrast-enhanced (DCE) MRI during early treatment with neoadjuvant chemotherapy (NAC). Materials and Methods Prospectively collected DCE MRI and 18F-FDG dbPET examinations were analyzed at baseline (T0) and after 3 weeks (T1) of NAC in 20 participants with 22 invasive breast cancers. FDG dbPET-derived standardized uptake value (SUV), metabolic tumor volume, and total lesion glycolysis (TLG) and MRI-derived percent enhancement (PE), signal enhancement ratio (SER), and functional tumor volume (FTV) were calculated at both time points. Differences between FDG dbPET and MRI parameters were evaluated after stratifying by receptor status, Ki-67 index, and residual cancer burden. Parameters were compared using Wilcoxon signed rank and Mann-Whitney U tests. Results High Ki-67 tumors had higher baseline SUVmean (difference, 5.1; P = .01) and SUVpeak (difference, 5.5; P = .04). At T1, decreases were observed in FDG dbPET measures (pseudo-median difference T0 minus T1 value [95% CI]) of SUVmax (-6.2 [-10.2, -2.6]; P < .001), SUVmean (-2.6 [-4.9, -1.3]; P < .001), SUVpeak (-4.2 [-6.9, -2.3]; P < .001), and TLG (-29.1 mL3 [-71.4, -6.8]; P = .005) and MRI measures of SERpeak (-1.0 [-1.3, -0.2]; P = .02) and FTV (-11.6 mL3 [-22.2, -1.7]; P = .009). Relative to nonresponsive tumors, responsive tumors showed a difference (95% CI) in percent change in SUVmax of -34.3% (-55.9%, 1.5%; P = .06) and in PEpeak of -42.4% (95% CI: -110.5%, 8.5%; P = .08). Conclusion 18F-FDG dbPET was sensitive to early changes during NAC and provided complementary information to DCE MRI that may be useful for treatment response evaluation. Keywords: Breast, PET, Dynamic Contrast-enhanced MRI Clinical trial registration no. NCT01042379 Supplemental material is available for this article. © RSNA, 2024.


Asunto(s)
Neoplasias de la Mama , Fluorodesoxiglucosa F18 , Humanos , Femenino , Fluorodesoxiglucosa F18/uso terapéutico , Terapia Neoadyuvante , Antígeno Ki-67 , Tomografía de Emisión de Positrones/métodos , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Imagen por Resonancia Magnética
11.
Nat Commun ; 14(1): 3543, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37336883

RESUMEN

PEAK pseudokinases are molecular scaffolds which dimerize to regulate cell migration, morphology, and proliferation, as well as cancer progression. The mechanistic role dimerization plays in PEAK scaffolding remains unclear, as there are no structures of PEAKs in complex with their interactors. Here, we report the cryo-EM structure of dimeric PEAK3 in complex with an endogenous 14-3-3 heterodimer. Our structure reveals an asymmetric binding mode between PEAK3 and 14-3-3 stabilized by one pseudokinase domain and the SHED domain of the PEAK3 dimer. The binding interface contains a canonical phosphosite-dependent primary interaction and a unique secondary interaction not observed in previous structures of 14-3-3/client complexes. Additionally, we show that PKD regulates PEAK3/14-3-3 binding, which when prevented leads to PEAK3 nuclear enrichment and distinct protein-protein interactions. Altogether, our data demonstrate that PEAK3 dimerization forms an unusual secondary interface for 14-3-3 binding, facilitating 14-3-3 regulation of PEAK3 localization and interactome diversity.


Asunto(s)
Proteínas 14-3-3 , Proteínas del Citoesqueleto , Proteínas del Citoesqueleto/química , Proteínas 14-3-3/química , Multimerización de Proteína
12.
Structure ; 31(3): 253-264.e6, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36805129

RESUMEN

The SARS-CoV-2 Omicron variant, with 15 mutations in Spike receptor-binding domain (Spike-RBD), renders virtually all clinical monoclonal antibodies against WT SARS-CoV-2 ineffective. We recently engineered the SARS-CoV-2 host entry receptor, ACE2, to tightly bind WT-RBD and prevent viral entry into host cells ("receptor traps"). Here we determine cryo-EM structures of our receptor traps in complex with stabilized Spike ectodomain. We develop a multi-model pipeline combining Rosetta protein modeling software and cryo-EM to allow interface energy calculations even at limited resolution and identify interface side chains that allow for high-affinity interactions between our ACE2 receptor traps and Spike-RBD. Our structural analysis provides a mechanistic rationale for the high-affinity (0.53-4.2 nM) binding of our ACE2 receptor traps to Omicron-RBD confirmed with biolayer interferometry measurements. Finally, we show that ACE2 receptor traps potently neutralize Omicron and Delta pseudotyped viruses, providing alternative therapeutic routes to combat this evolving virus.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Humanos , SARS-CoV-2 , Anticuerpos Monoclonales , Unión Proteica , Anticuerpos Neutralizantes
13.
Methods Enzymol ; 667: 611-632, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35525556

RESUMEN

Biochemical analyses of membrane receptor kinases have been limited by challenges in obtaining sufficient homogeneous receptor samples for downstream structural and biophysical characterization. Here, we report a suite of methods for the efficient expression, purification, and visualization by cryo-electron microscopy (cryo-EM) of near full-length Human Epidermal Growth Factor Receptor 3 (HER3), a receptor tyrosine pseudokinase, in the unliganded state. Through transient mammalian cell expression, a two-step purification with detergent exchange into lauryl maltose neopentyl glycol (LMNG), and freezing devoid of background detergent micelle, we obtained ~6Å reconstructions of the ~60kDa fully-glycosylated unliganded extracellular domain of HER3 from just 30mL of suspension culture. The reconstructions reveal previously unappreciated extracellular domain dynamics and glycosylation sites.


Asunto(s)
Detergentes , Micelas , Animales , Microscopía por Crioelectrón/métodos , Humanos , Mamíferos
14.
Methods Enzymol ; 667: 633-662, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35525557

RESUMEN

Obtaining high-resolution structures of Receptor Tyrosine Kinases that visualize extracellular, transmembrane and intracellular kinase regions simultaneously is an eagerly pursued but still unmet challenge of structural biology. The Human Epidermal Growth Factor Receptor 3 (HER3) that has a catalytically inactive kinase domain (pseudokinase) forms a potent signaling complex upon binding of growth factor neuregulin 1ß (NRG1ß) and upon dimerization with a close homolog, the HER2 receptor. The HER2/HER3/NRG1ß complex is often referred to as an oncogenic driver in breast cancer and is an attractive target for anti-cancer therapies. After overcoming significant hurdles in isolating sufficient amounts of the HER2/HER3/NRG1ß complex for structural studies by cryo-electron microscopy (cryo-EM), we recently obtained the first high-resolution structures of the extracellular portion of this complex. Here we describe a step-by-step protocol for obtaining a stable and homogenous HER2/HER3/NRG1ß complex for structural studies and our recommendation for collecting and processing cryo-EM data for this sample. We also show improved EM density for the transmembrane and kinase domains of the receptors, which continue to evade structural determination at high resolution. The discussed strategies are tunable and applicable to other membrane receptor complexes.


Asunto(s)
Neoplasias de la Mama , Receptor ErbB-3 , Neoplasias de la Mama/metabolismo , Microscopía por Crioelectrón , Femenino , Humanos , Ligandos , Receptor ErbB-2/química , Receptor ErbB-2/metabolismo , Receptor ErbB-3/química , Receptor ErbB-3/metabolismo
15.
Neurologist ; 27(4): 173-176, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34967821

RESUMEN

BACKGROUND: Despite calls to increase diversity in the health care workforce, most medical fields including neurology have seen minimal advances, owing in part to the lack of developing a robust pipeline for trainees from underrepresented backgrounds. We sought to create an immersive, replicable neurology-themed summer camp and longitudinal mentorship program for underrepresented-in-medicine (URM) high-school students to encourage them to enter the training pipeline in neuroscience-related fields. METHODS: We established an annual, no-cost 1-week camp for local URM students with the goals of exposing them to different health care professions within neuroscience while providing them with college application resources and long-term mentorship. A postprogram survey was distributed to assess the students' attitudes towards the camp and their desires to pursue health care careers. RESULTS: Over the 4 years since the founding of the camp (2016-2020), a total of 96 students participated, of whom 53% were URM, 74% came from very low-income households, and 61% had parents who did not attend college. In total, 87 students (91%) completed the postcamp survey. Nearly all (97%) of the respondents were likely to recommend the camp to their peers, and the vast majority (85%) felt that Brain Camp made them more likely to pursue careers in health care. CONCLUSIONS: Brain Camp seeks to address the unmet need for low barrier-to-entry programs designed for URM high-school students interested in health care careers. We envision that our camp may serve as a blueprint for other similar programs across the nation with the goal of addressing the URM pipeline in neuroscience.


Asunto(s)
Selección de Profesión , Estudiantes de Medicina , Encéfalo , Humanos , Grupos Minoritarios/educación
16.
bioRxiv ; 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35982665

RESUMEN

The SARS-CoV-2 Omicron variant, with 15 mutations in Spike receptor binding domain (Spike-RBD), renders virtually all clinical monoclonal antibodies against WT SARS-CoV-2 ineffective. We recently engineered the SARS-CoV-2 host entry receptor, ACE2, to tightly bind WT-Spike-RBD and prevent viral entry into host cells ("receptor traps"). Here we determine cryo-EM structures of our receptor traps in complex with full length Spike. We develop a multi-model pipeline combining Rosetta protein modeling software and cryo-EM to allow interface energy calculations even at limited resolution and identify interface side chains that allow for high affinity interactions between our ACE2 receptor traps and Spike-RBD. Our structural analysis provides a mechanistic rationale for the high affinity (0.53 - 4.2nM) binding of our ACE2 receptor traps to Omicron-RBD confirmed with biolayer interferometry measurements. Finally, we show that ACE2 receptor traps potently neutralize Omicron- and Delta-pseudotyped viruses, providing alternative therapeutic routes to combat this evolving virus.

17.
Cell Rep Med ; 2(8): 100361, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34467245

RESUMEN

Hanker et al. reveal that co-occurring missense mutations in the human epidermal growth factor receptor 2 (HER2) and its catalytically inactive homolog HER3 synergize to promote oncogenic signaling by the HER2/HER3 complex.


Asunto(s)
Receptor ErbB-2 , Receptor ErbB-3 , Humanos , Oncogenes/genética , Fosforilación , Receptor ErbB-2/genética , Receptor ErbB-3/genética
18.
bioRxiv ; 2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33907743

RESUMEN

The COVID-19 pandemic has demonstrated the need for exploring different diagnostic and therapeutic modalities to tackle future viral threats. In this vein, we propose the idea of sentinel cells, cellular biosensors capable of detecting viral antigens and responding to them with customizable responses. Using SARS-CoV-2 as a test case, we developed a live cell sensor (SARSNotch) using a de novo-designed protein binder against the SARS-CoV-2 Spike protein. SARSNotch is capable of driving custom genetically-encoded payloads in immortalized cell lines or in primary T lymphocytes in response to purified SARS-CoV-2 Spike or in the presence of Spike-expressing cells. Furthermore, SARSNotch is functional in a cellular system used in directed evolution platforms for development of better binders or therapeutics. In keeping with the rapid dissemination of scientific knowledge that has characterized the incredible scientific response to the ongoing pandemic, we extend an open invitation for others to make use of and improve SARSNotch sentinel cells in the hopes of unlocking the potential of the next generation of smart antiviral therapeutics.

19.
Commun Biol ; 4(1): 475, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33846513

RESUMEN

COVID-19 is a respiratory illness caused by a novel coronavirus called SARS-CoV-2. The viral spike (S) protein engages the human angiotensin-converting enzyme 2 (ACE2) receptor to invade host cells with ~10-15-fold higher affinity compared to SARS-CoV S-protein, making it highly infectious. Here, we assessed if ACE2 polymorphisms can alter host susceptibility to SARS-CoV-2 by affecting this interaction. We analyzed over 290,000 samples representing >400 population groups from public genomic datasets and identified multiple ACE2 protein-altering variants. Using reported structural data, we identified natural ACE2 variants that could potentially affect virus-host interaction and thereby alter host susceptibility. These include variants S19P, I21V, E23K, K26R, T27A, N64K, T92I, Q102P and H378R that were predicted to increase susceptibility, while variants K31R, N33I, H34R, E35K, E37K, D38V, Y50F, N51S, M62V, K68E, F72V, Y83H, G326E, G352V, D355N, Q388L and D509Y were predicted to be protective variants that show decreased binding to S-protein. Using biochemical assays, we confirmed that K31R and E37K had decreased affinity, and K26R and T92I variants showed increased affinity for S-protein when compared to wildtype ACE2. Consistent with this, soluble ACE2 K26R and T92I were more effective in blocking entry of S-protein pseudotyped virus suggesting that ACE2 variants can modulate susceptibility to SARS-CoV-2.


Asunto(s)
Enzima Convertidora de Angiotensina 2/genética , COVID-19/genética , Predisposición Genética a la Enfermedad/genética , Mutación Missense/genética , Polimorfismo Genético , Receptores Virales/genética , Secuencia de Aminoácidos , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/metabolismo , COVID-19/virología , Interacciones Huésped-Patógeno , Humanos , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Receptores Virales/química , Receptores Virales/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiología , Homología de Secuencia de Aminoácido , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus
20.
Res Sq ; 2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-34031651

RESUMEN

The SARS-CoV-2 protein Nsp2 has been implicated in a wide range of viral processes, but its exact functions, and the structural basis of those functions, remain unknown. Here, we report an atomic model for full-length Nsp2 obtained by combining cryo-electron microscopy with deep learning-based structure prediction from AlphaFold2. The resulting structure reveals a highly-conserved zinc ion-binding site, suggesting a role for Nsp2 in RNA binding. Mapping emerging mutations from variants of SARS-CoV-2 on the resulting structure shows potential host-Nsp2 interaction regions. Using structural analysis together with affinity tagged purification mass spectrometry experiments, we identify Nsp2 mutants that are unable to interact with the actin-nucleation-promoting WASH protein complex or with GIGYF2, an inhibitor of translation initiation and modulator of ribosome-associated quality control. Our work suggests a potential role of Nsp2 in linking viral transcription within the viral replication-transcription complexes (RTC) to the translation initiation of the viral message. Collectively, the structure reported here, combined with mutant interaction mapping, provides a foundation for functional studies of this evolutionary conserved coronavirus protein and may assist future drug design.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA