Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 591(7848): 87-91, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33442059

RESUMEN

Dire wolves are considered to be one of the most common and widespread large carnivores in Pleistocene America1, yet relatively little is known about their evolution or extinction. Here, to reconstruct the evolutionary history of dire wolves, we sequenced five genomes from sub-fossil remains dating from 13,000 to more than 50,000 years ago. Our results indicate that although they were similar morphologically to the extant grey wolf, dire wolves were a highly divergent lineage that split from living canids around 5.7 million years ago. In contrast to numerous examples of hybridization across Canidae2,3, there is no evidence for gene flow between dire wolves and either North American grey wolves or coyotes. This suggests that dire wolves evolved in isolation from the Pleistocene ancestors of these species. Our results also support an early New World origin of dire wolves, while the ancestors of grey wolves, coyotes and dholes evolved in Eurasia and colonized North America only relatively recently.


Asunto(s)
Extinción Biológica , Filogenia , Lobos/clasificación , Animales , Fósiles , Flujo Génico , Genoma/genética , Genómica , Mapeo Geográfico , América del Norte , Paleontología , Fenotipo , Lobos/genética
2.
Nature ; 544(7650): 357-361, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28273061

RESUMEN

Recent genomic data have revealed multiple interactions between Neanderthals and modern humans, but there is currently little genetic evidence regarding Neanderthal behaviour, diet, or disease. Here we describe the shotgun-sequencing of ancient DNA from five specimens of Neanderthal calcified dental plaque (calculus) and the characterization of regional differences in Neanderthal ecology. At Spy cave, Belgium, Neanderthal diet was heavily meat based and included woolly rhinoceros and wild sheep (mouflon), characteristic of a steppe environment. In contrast, no meat was detected in the diet of Neanderthals from El Sidrón cave, Spain, and dietary components of mushrooms, pine nuts, and moss reflected forest gathering. Differences in diet were also linked to an overall shift in the oral bacterial community (microbiota) and suggested that meat consumption contributed to substantial variation within Neanderthal microbiota. Evidence for self-medication was detected in an El Sidrón Neanderthal with a dental abscess and a chronic gastrointestinal pathogen (Enterocytozoon bieneusi). Metagenomic data from this individual also contained a nearly complete genome of the archaeal commensal Methanobrevibacter oralis (10.2× depth of coverage)-the oldest draft microbial genome generated to date, at around 48,000 years old. DNA preserved within dental calculus represents a notable source of information about the behaviour and health of ancient hominin specimens, as well as a unique system that is useful for the study of long-term microbial evolution.


Asunto(s)
ADN Antiguo/análisis , Cálculos Dentales/química , Dieta/historia , Preferencias Alimentarias , Salud/historia , Hombre de Neandertal/microbiología , Hombre de Neandertal/psicología , Animales , Bélgica , Carnivoría , Cuevas , Enterocytozoon/genética , Enterocytozoon/aislamiento & purificación , Genoma Bacteriano/genética , Historia Antigua , Humanos , Intestinos/microbiología , Carne/historia , Methanobrevibacter/genética , Methanobrevibacter/aislamiento & purificación , Boca/microbiología , Pan troglodytes/microbiología , Penicillium/química , Perisodáctilos , Ovinos , España , Estómago/microbiología , Simbiosis , Factores de Tiempo , Vegetarianos/historia
3.
Mol Ecol ; 29(9): 1596-1610, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31840921

RESUMEN

Grey wolves (Canis lupus) are one of the few large terrestrial carnivores that have maintained a wide geographical distribution across the Northern Hemisphere throughout the Pleistocene and Holocene. Recent genetic studies have suggested that, despite this continuous presence, major demographic changes occurred in wolf populations between the Late Pleistocene and early Holocene, and that extant wolves trace their ancestry to a single Late Pleistocene population. Both the geographical origin of this ancestral population and how it became widespread remain unknown. Here, we used a spatially and temporally explicit modelling framework to analyse a data set of 90 modern and 45 ancient mitochondrial wolf genomes from across the Northern Hemisphere, spanning the last 50,000 years. Our results suggest that contemporary wolf populations trace their ancestry to an expansion from Beringia at the end of the Last Glacial Maximum, and that this process was most likely driven by Late Pleistocene ecological fluctuations that occurred across the Northern Hemisphere. This study provides direct ancient genetic evidence that long-range migration has played an important role in the population history of a large carnivore, and provides insight into how wolves survived the wave of megafaunal extinctions at the end of the last glaciation. Moreover, because Late Pleistocene grey wolves were the likely source from which all modern dogs trace their origins, the demographic history described in this study has fundamental implications for understanding the geographical origin of the dog.


Asunto(s)
Evolución Biológica , ADN Antiguo , Genoma Mitocondrial , Lobos , Animales , ADN Mitocondrial/genética , Perros , Flujo Génico , Filogenia , Lobos/genética
4.
BMC Evol Biol ; 19(1): 226, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31842740

RESUMEN

BACKGROUND: Recently we proposed an evolutionary explanation for a spinal pathology that afflicts many people, intervertebral disc herniation (Plomp et al. [2015] BMC Evolutionary Biology 15, 68). Using 2D data, we found that the bodies and pedicles of lower vertebrae of pathological humans were more similar in shape to those of chimpanzees than were those of healthy humans. Based on this, we hypothesized that some individuals are more prone to intervertebral disc herniation because their vertebrae exhibit ancestral traits and therefore are less well adapted for the stresses associated with bipedalism. Here, we report a study in which we tested this "Ancestral Shape Hypothesis" with 3D data from the last two thoracic and first lumbar vertebrae of pathological Homo sapiens, healthy H. sapiens, Pan troglodytes, and several extinct hominins. RESULTS: We found that the pathological and healthy H. sapiens vertebrae differed significantly in shape, and that the pathological H. sapiens vertebrae were closer in shape to the P. troglodytes vertebrae than were the healthy H. sapiens vertebrae. Additionally, we found that the pathological human vertebrae were generally more similar in shape to the vertebrae of the extinct hominins than were the healthy H. sapiens vertebrae. These results are consistent with the predictions of the Ancestral Shape Hypothesis. Several vertebral traits were associated with disc herniation, including a vertebral body that is both more circular and more ventrally wedged, relatively short pedicles and laminae, relatively long, more cranio-laterally projecting transverse processes, and relatively long, cranially-oriented spinous processes. We found that there are biomechanical and comparative anatomical reasons for suspecting that all of these traits are capable of predisposing individuals to intervertebral disc herniation. CONCLUSIONS: The results of the present study add weight to the hypothesis that intervertebral disc herniation in H. sapiens is connected with vertebral shape. Specifically, they suggest that individuals whose vertebrae are towards the ancestral end of the range of shape variation within H. sapiens have a greater propensity to develop the condition than other individuals. More generally, the study shows that evolutionary thinking has the potential to shed new light on human skeletal pathologies.


Asunto(s)
Fósiles , Hominidae/anatomía & histología , Desplazamiento del Disco Intervertebral/patología , Vértebras Lumbares/patología , Pan troglodytes/anatomía & histología , Vértebras Torácicas/patología , Animales , Evolución Biológica , Humanos , Disco Intervertebral/patología , Vértebras Lumbares/anatomía & histología , Vértebras Torácicas/anatomía & histología
5.
J Hum Evol ; 137: 102693, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31711026

RESUMEN

A number of putative adaptations for bipedalism have been identified in the hominin spine. However, it is possible that some have been overlooked because only a few studies have used 3D and these studies have focused on cervical vertebrae. With this in mind, we used geometric morphometric techniques to compare the 3D shapes of three thoracic and two lumbar vertebrae of Homo sapiens, Pan troglodytes, Gorilla gorilla, and Pongo pygmaeus. The study had two goals. One was to confirm the existence of traits previously reported to distinguish the thoracic and lumbar vertebrae of H. sapiens from those of the great apes. The other was to, if possible, identify hitherto undescribed traits that differentiate H. sapiens thoracic and lumbar vertebrae from those of the great apes. Both goals were accomplished. Our analyses not only substantiated a number of traits that have previously been discussed in the literature but also identified four traits that have not been described before: (1) dorsoventrally shorter pedicles in the upper thoracic vertebrae; (2) dorsoventrally longer laminae in all five of the vertebrae examined; (3) longer transverse processes in the upper thoracic vertebrae; and (4) craniocaudally 'pinched' spinous process tips in all of the vertebrae examined. A review of the biomechanical literature suggests that most of the traits highlighted in our analyses can be plausibly linked to bipedalism, including three of the four new ones. As such, the present study not only sheds further light on the differences between the spines of H. sapiens and great apes but also enhances our understanding of how the shift to bipedalism affected the hominin vertebral column.


Asunto(s)
Adaptación Biológica , Vértebras Lumbares/anatomía & histología , Vértebras Torácicas/anatomía & histología , Caminata , Humanos
6.
Mol Biol Evol ; 34(8): 1981-1990, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28444234

RESUMEN

Ancient DNA provides an opportunity to infer the drivers of natural selection by linking allele frequency changes to temporal shifts in environment or cultural practices. However, analyses have often been hampered by uneven sampling and uncertainties in sample dating, as well as being confounded by demographic processes. Here, we present a Bayesian statistical framework for quantifying the timing and strength of selection using ancient DNA that explicitly addresses these challenges. We applied this method to time series data for two loci: TSHR and BCDO2, both hypothesised to have undergone strong and recent selection in domestic chickens. The derived variant in TSHR, associated with reduced aggression to conspecifics and faster onset of egg laying, shows strong selection beginning around 1,100 years ago, coincident with archaeological evidence for intensified chicken production and documented changes in egg and chicken consumption. To our knowledge, this is the first example of preindustrial domesticate trait selection in response to a historically attested cultural shift in food preference. For BCDO2, we find support for selection, but demonstrate that the recent rise in allele frequency could also have been driven by gene flow from imported Asian chickens during more recent breed formations. Our findings highlight that traits found ubiquitously in modern domestic species may not necessarily have originated during the early stages of domestication. In addition, our results demonstrate the importance of precise estimation of allele frequency trajectories through time for understanding the drivers of selection.


Asunto(s)
Pollos/genética , Selección Genética/genética , Análisis de Secuencia de ADN/métodos , Alelos , Crianza de Animales Domésticos , Animales , Animales Domésticos/genética , Teorema de Bayes , Cruzamiento , ADN Antiguo/análisis , ADN Mitocondrial/genética , Dioxigenasas/genética , Frecuencia de los Genes/genética , Aves de Corral/genética , Receptores de Tirotropina/genética
7.
Mamm Biol ; 92: 62-67, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30177868

RESUMEN

Taxonomic uncertainties in the Rattus genus persist due to among-species morphological conservatism coupled with within-species environmental variation in morphology. As a result, this genus contains a number of possible cryptic species. One important example can be found in R. praetor, where morphological studies indicate it is a possible species complex. Genetic studies of R. praetor (limited to analysis of mitochondrial DNA) have been inconclusive, but do indicate such subdivision. Here we use geometric morphometrics to explore this possible species complex by analysing the dental traits of 48 specimens from New Guinea and neighbouring regions. We find separate molar morphologies for Bougainsville Island, central New Guinea and west New Guinea which cannot be easily explained by different environmental factors (climate, precipitation and altitude), strongly suggesting the existence of a number of evolutionarily distinct taxa within what is currently called R. praetor thus supporting previous suggestions that R. praetor is a species complex. Our findings demonstrate the potential of advanced morphological analyses in identifying separate species, contrary to the claims of morphological conservatism. Future analyses should combine geometric morphometrics with genetic analyses over the species range and include sub-fossil specimens from the Bismarck archipelago and Solomon Islands to resolve the evolutionary history of R. praetor.

8.
Biol Lett ; 13(8)2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28794276

RESUMEN

Domestic animals are often described as paedomorphic, meaning that they retain juvenile characteristics into adulthood. Through a three-dimensional landmark-based geometric morphometric analysis of cranial morphology at three growth stages, we demonstrate that wild boar (n = 138) and domestic pigs (n = 106) (Sus scrofa) follow distinct ontogenetic trajectories. With the exception of the size ratio between facial and neurocranial regions, paedomorphism does not appear to be the primary pattern describing the observed differences between wild and domestic pig cranial morphologies. The cranial phenotype of domestic pigs instead involves developmental innovation during domestication. This result questions the long-standing assumption that domestic animal phenotypes are paedomorphic forms of their wild counterparts.


Asunto(s)
Cráneo , Adolescente , Animales , Animales Domésticos , Humanos , Fenotipo , Sus scrofa , Porcinos
9.
Proc Natl Acad Sci U S A ; 111(17): 6153-8, 2014 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-24753599

RESUMEN

For the last 150 y scholars have focused upon the roles of intentional breeding and genetic isolation as fundamental to understanding the process of animal domestication. This analysis of ethnoarchaeological, archaeological, and genetic data suggests that long-term gene flow between wild and domestic stocks was much more common than previously assumed, and that selective breeding of females was largely absent during the early phases of animal domestication. These findings challenge assumptions about severe genetic bottlenecks during domestication, expectations regarding monophyletic origins, and interpretations of multiple domestications. The findings also raise new questions regarding ways in which behavioral and phenotypic domestication traits were developed and maintained.


Asunto(s)
Animales Domésticos/genética , Cruzamiento , Flujo Génico/genética , Animales
10.
Proc Natl Acad Sci U S A ; 111(17): 6184-9, 2014 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-24753608

RESUMEN

Modern domestic plants and animals are subject to human-driven selection for desired phenotypic traits and behavior. Large-scale genetic studies of modern domestic populations and their wild relatives have revealed not only the genetic mechanisms underlying specific phenotypic traits, but also allowed for the identification of candidate domestication genes. Our understanding of the importance of these genes during the initial stages of the domestication process traditionally rests on the assumption that robust inferences about the past can be made on the basis of modern genetic datasets. A growing body of evidence from ancient DNA studies, however, has revealed that ancient and even historic populations often bear little resemblance to their modern counterparts. Here, we test the temporal context of selection on specific genetic loci known to differentiate modern domestic chickens from their extant wild ancestors. We extracted DNA from 80 ancient chickens excavated from 12 European archaeological sites, dated from ∼ 280 B.C. to the 18th century A.D. We targeted three unlinked genetic loci: the mitochondrial control region, a gene associated with yellow skin color (ß-carotene dioxygenase 2), and a putative domestication gene thought to be linked to photoperiod and reproduction (thyroid-stimulating hormone receptor, TSHR). Our results reveal significant variability in both nuclear genes, suggesting that the commonality of yellow skin in Western breeds and the near fixation of TSHR in all modern chickens took place only in the past 500 y. In addition, mitochondrial variation has increased as a result of recent admixture with exotic breeds. We conclude by emphasizing the perils of inferring the past from modern genetic data alone.


Asunto(s)
Animales Domésticos/genética , Pollos/genética , ADN/genética , ADN/historia , Animales , ADN Mitocondrial/genética , Europa (Continente) , Geografía , Haplotipos/genética , Historia Antigua , Humanos , Datos de Secuencia Molecular , Reproducibilidad de los Resultados
11.
Proc Natl Acad Sci U S A ; 111(13): 4826-31, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24639505

RESUMEN

The human colonization of Remote Oceania remains one of the great feats of exploration in history, proceeding east from Asia across the vast expanse of the Pacific Ocean. Human commensal and domesticated species were widely transported as part of this diaspora, possibly as far as South America. We sequenced mitochondrial control region DNA from 122 modern and 22 ancient chicken specimens from Polynesia and Island Southeast Asia and used these together with Bayesian modeling methods to examine the human dispersal of chickens across this area. We show that specific techniques are essential to remove contaminating modern DNA from experiments, which appear to have impacted previous studies of Pacific chickens. In contrast to previous reports, we find that all ancient specimens and a high proportion of the modern chickens possess a group of unique, closely related haplotypes found only in the Pacific. This group of haplotypes appears to represent the authentic founding mitochondrial DNA chicken lineages transported across the Pacific, and allows the early dispersal of chickens across Micronesia and Polynesia to be modeled. Importantly, chickens carrying this genetic signature persist on several Pacific islands at high frequencies, suggesting that the original Polynesian chicken lineages may still survive. No early South American chicken samples have been detected with the diagnostic Polynesian mtDNA haplotypes, arguing against reports that chickens provide evidence of Polynesian contact with pre-European South America. Two modern specimens from the Philippines carry haplotypes similar to the ancient Pacific samples, providing clues about a potential homeland for the Polynesian chicken.


Asunto(s)
Migración Animal , Pollos/genética , ADN/genética , Animales , Emparejamiento Base/genética , Teorema de Bayes , Genoma Mitocondrial/genética , Geografía , Haplotipos/genética , Humanos , Región de Control de Posición/genética , Datos de Secuencia Molecular , Océano Pacífico , Filogenia , Polinesia , Factores de Tiempo
12.
Proc Natl Acad Sci U S A ; 111(17): 6159-64, 2014 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-24753572

RESUMEN

The domestication of plants and animals marks one of the most significant transitions in human, and indeed global, history. Traditionally, study of the domestication process was the exclusive domain of archaeologists and agricultural scientists; today it is an increasingly multidisciplinary enterprise that has come to involve the skills of evolutionary biologists and geneticists. Although the application of new information sources and methodologies has dramatically transformed our ability to study and understand domestication, it has also generated increasingly large and complex datasets, the interpretation of which is not straightforward. In particular, challenges of equifinality, evolutionary variance, and emergence of unexpected or counter-intuitive patterns all face researchers attempting to infer past processes directly from patterns in data. We argue that explicit modeling approaches, drawing upon emerging methodologies in statistics and population genetics, provide a powerful means of addressing these limitations. Modeling also offers an approach to analyzing datasets that avoids conclusions steered by implicit biases, and makes possible the formal integration of different data types. Here we outline some of the modeling approaches most relevant to current problems in domestication research, and demonstrate the ways in which simulation modeling is beginning to reshape our understanding of the domestication process.


Asunto(s)
Animales Domésticos/crecimiento & desarrollo , Productos Agrícolas/crecimiento & desarrollo , Narración , Animales , Humanos , Hibridación Genética , Modelos Biológicos
13.
Proc Natl Acad Sci U S A ; 111(17): 6139-46, 2014 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-24757054

RESUMEN

It is difficult to overstate the cultural and biological impacts that the domestication of plants and animals has had on our species. Fundamental questions regarding where, when, and how many times domestication took place have been of primary interest within a wide range of academic disciplines. Within the last two decades, the advent of new archaeological and genetic techniques has revolutionized our understanding of the pattern and process of domestication and agricultural origins that led to our modern way of life. In the spring of 2011, 25 scholars with a central interest in domestication representing the fields of genetics, archaeobotany, zooarchaeology, geoarchaeology, and archaeology met at the National Evolutionary Synthesis Center to discuss recent domestication research progress and identify challenges for the future. In this introduction to the resulting Special Feature, we present the state of the art in the field by discussing what is known about the spatial and temporal patterns of domestication, and controversies surrounding the speed, intentionality, and evolutionary aspects of the domestication process. We then highlight three key challenges for future research. We conclude by arguing that although recent progress has been impressive, the next decade will yield even more substantial insights not only into how domestication took place, but also when and where it did, and where and why it did not.


Asunto(s)
Animales Domésticos/genética , Productos Agrícolas/genética , Animales , Evolución Biológica , Ambiente , Geografía , Análisis Espacio-Temporal
14.
BMC Evol Biol ; 15: 68, 2015 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-25927934

RESUMEN

BACKGROUND: Recent studies suggest there is a relationship between intervertebral disc herniation and vertebral shape. The nature of this relationship is unclear, however. Humans are more commonly afflicted with spinal disease than are non-human primates and one suggested explanation for this is the stress placed on the spine by bipedalism. With this in mind, we carried out a study of human, chimpanzee, and orangutan vertebrae to examine the links between vertebral shape, locomotion, and Schmorl's nodes, which are bony indicators of vertical intervertebral disc herniation. We tested the hypothesis that vertical disc herniation preferentially affects individuals with vertebrae that are towards the ancestral end of the range of shape variation within Homo sapiens and therefore are less well adapted for bipedalism. RESULTS: The study employed geometric morphometric techniques. Two-dimensional landmarks were used to capture the shapes of the superior aspect of the body and posterior elements of the last thoracic and first lumbar vertebrae of chimpanzees, orangutans, and humans with and without Schmorl's nodes. These data were subjected to multivariate statistical analyses. Canonical Variates Analysis indicated that the last thoracic and first lumbar vertebrae of healthy humans, chimpanzees, and orangutans can be distinguished from each other (p<0.028), but vertebrae of pathological humans and chimpanzees cannot (p>0.4590). The Procrustes distance between pathological humans and chimpanzees was found to be smaller than the one between pathological and healthy humans. This was the case for both vertebrae. Pair-wise MANOVAs of Principal Component scores for both the thoracic and lumbar vertebrae found significant differences between all pairs of taxa (p<0.029), except pathological humans vs chimpanzees (p>0.367). Together, these results suggest that human vertebrae with Schmorl's nodes are closer in shape to chimpanzee vertebrae than are healthy human vertebrae. CONCLUSIONS: The results support the hypothesis that intervertebral disc herniation preferentially affects individuals with vertebrae that are towards the ancestral end of the range of shape variation within H. sapiens and therefore are less well adapted for bipedalism. This finding not only has clinical implications but also illustrates the benefits of bringing the tools of evolutionary biology to bear on problems in medicine and public health.


Asunto(s)
Disco Intervertebral/metabolismo , Animales , Evolución Biológica , Hominidae , Humanos , Disco Intervertebral/patología , Desplazamiento del Disco Intervertebral/patología , Pan troglodytes/anatomía & histología , Pongo/anatomía & histología , Columna Vertebral/anatomía & histología , Columna Vertebral/patología
15.
BMC Evol Biol ; 15: 6, 2015 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-25648385

RESUMEN

BACKGROUND: Identifying the phenotypic responses to domestication remains a long-standing and important question for researchers studying its early history. The great diversity in domestic animals and plants that exists today bears testament to the profound changes that domestication has induced in their ancestral wild forms over the last millennia. Domestication is a complex evolutionary process in which wild organisms are moved to new anthropogenic environments. Although modern genetics are significantly improving our understanding of domestication and breed formation, little is still known about the associated morphological changes linked to the process itself. In order to explore phenotypic variation induced by different levels of human control, we analysed the diversity of dental size, shape and allometry in modern free-living and captive wild, wild x domestic hybrid, domestic and insular Sus scrofa populations. RESULTS: We show that domestication has created completely new dental phenotypes not found in wild boar (although the amount of variation amongst domestic pigs does not exceed that found in the wild). Wild boar tooth shape also appears to be biogeographically structured, likely the result of post-glacial recolonisation history. Furthermore, distinct dental phenotypes were also observed among domestic breeds, probably the result of differing types and intensity of past and present husbandry practices. Captivity also appears to impact tooth shape. Wild x domestic hybrids possess second molars that are strictly intermediate in shape between wild boar and domestic pigs (third molars, however, showing greater shape similarity with wild boar) while their size is more similar to domestic pigs. The dental phenotypes of insular Sus scrofa populations found on Corsica and Sardinia today (originally introduced by Neolithic settlers to the islands) can be explained either by feralization of the original introduced domestic swine or that the founding population maintained a wild boar phenotype through time. CONCLUSIONS: Domestication has driven significant phenotypic diversification in Sus scrofa. Captivity (environmental control), hybridization (genome admixture), and introduction to islands all correspond to differing levels of human control and may be considered different stages of the domestication process. The relatively well-known genetic evolutionary history of pigs shows a similar complexity at the phenotypic level.


Asunto(s)
Evolución Molecular , Sus scrofa/genética , Diente/anatomía & histología , Animales , Animales Domésticos , Variación Genética , Humanos , Hibridación Genética , Fenotipo , Sus scrofa/fisiología , Diente/fisiología
16.
J Hum Evol ; 79: 119-24, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25476244

RESUMEN

Dental calculus (calcified tartar or plaque) is today widespread on modern human teeth around the world. A combination of soft starchy foods, changing acidity of the oral environment, genetic pre-disposition, and the absence of dental hygiene all lead to the build-up of microorganisms and food debris on the tooth crown, which eventually calcifies through a complex process of mineralisation. Millions of oral microbes are trapped and preserved within this mineralised matrix, including pathogens associated with the oral cavity and airways, masticated food debris, and other types of extraneous particles that enter the mouth. As a result, archaeologists and anthropologists are increasingly using ancient human dental calculus to explore broad aspects of past human diet and health. Most recently, high-throughput DNA sequencing of ancient dental calculus has provided valuable insights into the evolution of the oral microbiome and shed new light on the impacts of some of the major biocultural transitions on human health throughout history and prehistory. Here, we provide a brief historical overview of archaeological dental calculus research, and discuss the current approaches to ancient DNA sampling and sequencing. Novel applications of ancient DNA from dental calculus are discussed, highlighting the considerable scope of this new research field for evolutionary biology and modern medicine.


Asunto(s)
ADN Bacteriano/genética , Cálculos Dentales/microbiología , Arqueología , Cálculos Dentales/historia , Dieta , Evolución Molecular , Historia Antigua , Humanos , Microbiota/genética , Salud Bucal/historia
17.
Biol Lett ; 11(10)2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26510672

RESUMEN

Mitochondrial genomes represent a valuable source of data for evolutionary research, but studies of their short-term evolution have typically been limited to invertebrates, humans and laboratory organisms. Here we present a detailed study of 12 mitochondrial genomes that span a total of 385 transmissions in a well-documented 50-generation pedigree in which two lineages of chickens were selected for low and high juvenile body weight. These data allowed us to test the hypothesis of time-dependent evolutionary rates and the assumption of strict maternal mitochondrial transmission, and to investigate the role of mitochondrial mutations in determining phenotype. The identification of a non-synonymous mutation in ND4L and a synonymous mutation in CYTB, both novel mutations in Gallus, allowed us to estimate a molecular rate of 3.13 × 10(-7) mutations/site/year (95% confidence interval 3.75 × 10(-8)-1.12 × 10(-6)). This is substantially higher than avian rate estimates based upon fossil calibrations. Ascertaining which of the two novel mutations was present in an additional 49 individuals also revealed an instance of paternal inheritance of mtDNA. Lastly, an association analysis demonstrated that neither of the point mutations was strongly associated with the phenotypic differences between the two selection lines. Together, these observations reveal the highly dynamic nature of mitochondrial evolution over short time periods.


Asunto(s)
Evolución Biológica , Pollos/genética , ADN Mitocondrial/genética , Mitocondrias/genética , Animales , Animales Recién Nacidos , Peso Corporal , Femenino , Genoma Mitocondrial , Masculino , Tasa de Mutación , Linaje , Factores de Tiempo
18.
Proc Natl Acad Sci U S A ; 109(23): 8878-83, 2012 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-22615366

RESUMEN

The dog was the first domesticated animal but it remains uncertain when the domestication process began and whether it occurred just once or multiple times across the Northern Hemisphere. To ascertain the value of modern genetic data to elucidate the origins of dog domestication, we analyzed 49,024 autosomal SNPs in 1,375 dogs (representing 35 breeds) and 19 wolves. After combining our data with previously published data, we contrasted the genetic signatures of 121 breeds with a worldwide archeological assessment of the earliest dog remains. Correlating the earliest archeological dogs with the geographic locations of 14 so-called "ancient" breeds (defined by their genetic differentiation) resulted in a counterintuitive pattern. First, none of the ancient breeds derive from regions where the oldest archeological remains have been found. Second, three of the ancient breeds (Basenjis, Dingoes, and New Guinea Singing Dogs) come from regions outside the natural range of Canis lupus (the dog's wild ancestor) and where dogs were introduced more than 10,000 y after domestication. These results demonstrate that the unifying characteristic among all genetically distinct so-called ancient breeds is a lack of recent admixture with other breeds likely facilitated by geographic and cultural isolation. Furthermore, these genetically distinct ancient breeds only appear so because of their relative isolation, suggesting that studies of modern breeds have yet to shed light on dog origins. We conclude by assessing the limitations of past studies and how next-generation sequencing of modern and ancient individuals may unravel the history of dog domestication.


Asunto(s)
Animales Domésticos/genética , Demografía , Perros/genética , Variación Genética , Animales , Arqueología , Análisis por Conglomerados , Perros/fisiología , Filogeografía , Polimorfismo de Nucleótido Simple/genética , Especificidad de la Especie
19.
Mol Biol Evol ; 30(4): 824-32, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23180578

RESUMEN

Zooarcheological evidence suggests that pigs were domesticated in Southwest Asia ~8,500 BC. They then spread across the Middle and Near East and westward into Europe alongside early agriculturalists. European pigs were either domesticated independently or more likely appeared so as a result of admixture between introduced pigs and European wild boar. As a result, European wild boar mtDNA lineages replaced Near Eastern/Anatolian mtDNA signatures in Europe and subsequently replaced indigenous domestic pig lineages in Anatolia. The specific details of these processes, however, remain unknown. To address questions related to early pig domestication, dispersal, and turnover in the Near East, we analyzed ancient mitochondrial DNA and dental geometric morphometric variation in 393 ancient pig specimens representing 48 archeological sites (from the Pre-Pottery Neolithic to the Medieval period) from Armenia, Cyprus, Georgia, Iran, Syria, and Turkey. Our results reveal the first genetic signatures of early domestic pigs in the Near Eastern Neolithic core zone. We also demonstrate that these early pigs differed genetically from those in western Anatolia that were introduced to Europe during the Neolithic expansion. In addition, we present a significantly more refined chronology for the introduction of European domestic pigs into Asia Minor that took place during the Bronze Age, at least 900 years earlier than previously detected. By the 5th century AD, European signatures completely replaced the endemic lineages possibly coinciding with the widespread demographic and societal changes that occurred during the Anatolian Bronze and Iron Ages.


Asunto(s)
ADN Mitocondrial/genética , Diente Molar/anatomía & histología , Sus scrofa/genética , Distribución Animal , Animales , Animales Domésticos/genética , Asia , Europa (Continente) , Humanos , Filogeografía , Análisis de Secuencia de ADN , Porcinos/genética
20.
Anthropol Anz ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38445747

RESUMEN

Establishing a link between mandibular morphology and diet in extant primates has long been a goal in biological anthropology because it should provide important insight into the diets of extinct primates, including fossil hominins. To date, efforts to explore this question have produced mixed results, largely perhaps due to a reliance on the use of 2D morphological data. Here, we report a study where we investigated whether 3D shape data would provide a clearer picture. We used geometric morphometrics to analyse 3D mandibular shape variation in a sample of > 200 primate specimens, representing individuals from 27 species and five families. Two sets of analyses investigated i) whether there was a relationship between mandibular shape and four standard dietary categories and ii) whether there was a relationship between mandibular shape and a well-known index of diet quality. We found an association between mandibular shape and the dietary categories when we employed raw Procrustes coordinates and allometry-free residuals, but the relationship was weak to non-existent when the effects of phylogeny were taken into account. We found no relationship between shape and the diet quality index, no matter whether the data were raw, corrected for the effects of allometry, corrected for the effects of phylogeny, or corrected for the effects of both allometry and phylogeny. Taken together, the results of the two sets of analyses suggest that there is a weak relationship between 3D mandibular shape and diet in extant primates. Allometry and phylogeny appear to be more important influences on the 3D shape of extant primate mandibles than is diet. We conclude from this that 3D analysis of mandibular shape is unlikely to further illuminate the diets of extinct primates, and research efforts should, therefore, be directed elsewhere.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA