Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Am J Obstet Gynecol ; 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38423447

RESUMEN

BACKGROUND: The great obstetrical syndromes of fetal growth restriction and hypertensive disorders of pregnancy can occur individually or be interrelated. Placental pathologic findings often overlap between these conditions, regardless of whether 1 or both diagnoses are present. Quantification of placental villous structures in each of these settings may identify distinct differences in developmental pathways. OBJECTIVE: This study aimed to determine how the quantity and surface area of placental villi and vessels differ between severe, early-onset fetal growth restriction with absent or reversed umbilical artery Doppler indices and hypertensive disorders of pregnancy or the 2 conditions combined among subjects with disease severity that warrant early preterm delivery. We hypothesized that the trajectories of placental morphogenesis diverge after a common initiating insult of deep defective placentation. Specifically, we postulated that only villi are affected in pregnancy-related hypertension, whereas both villous and vascular structures are proportionally diminished in severe fetal growth restriction with no additional effect when hypertension is concomitantly present. STUDY DESIGN: In this retrospective cohort study, paraffin-embedded placental tissue was obtained from 4 groups, namely (1) patients with severe fetal growth restriction with absent or reversed umbilical artery end-diastolic velocities and hypertensive disorders of pregnancy, (2) patients with severe fetal growth restriction with absent or reversed umbilical artery Doppler indices and no hypertension, (3) gestational age-matched, appropriately grown pregnancies with hypertensive disease, and (4) gestational age-matched, appropriately grown pregnancies without hypertension. Dual immunohistochemistry for cytokeratin-7 (trophoblast) and CD34 (endothelial cells) was performed, followed by artificial intelligence-driven morphometric analyses. The number of villi, total villous area, number of fetoplacental vessels, and total vascular area across villi within a uniform region of interest were quantified. Quantitative analyses of placental structures were modeled using linear regression. RESULTS: Placentas from pregnancies complicated by hypertensive disorders of pregnancy exhibited significantly fewer stem villi (-282 stem villi; 95% confidence interval, -467 to -98; P<.01), a smaller stem villous area (-4.3 mm2; 95% confidence interval, -7.3 to -1.2; P<.01), and fewer stem villous vessels (-4967 stem villous vessels; 95% confidence interval, -8501 to -1433; P<.01) with no difference in the total vascular area. In contrast, placental abnormalities in cases with severe growth restriction were limited to terminal villi with global decreases in the number of villi (-873 terminal villi; 95% confidence interval, -1501 to -246; P<.01), the villous area (-1.5 mm2; 95% confidence interval, -2.7 to -0.4; P<.01), the number of blood vessels (-5165 terminal villous vessels; 95% confidence interval, -8201 to -2128; P<.01), and the vascular area (-0.6 mm2; 95% confidence interval, -1.1 to -0.1; P=.02). The combination of hypertension and growth restriction had no additional effect beyond the individual impact of each state. CONCLUSION: Pregnancies complicated by hypertensive disorders of pregnancy exhibited defects in the stem villi only, whereas placental abnormalities in severely growth restricted pregnancies with absent or reversed umbilical artery end-diastolic velocities were limited to the terminal villi. There were no significant statistical interactions in the combination of growth restriction and hypertension, suggesting that distinct pathophysiological pathways downstream of the initial insult of defective placentation are involved in each entity and do not synergize to lead to more severe pathologic consequences. Delineating mechanisms that underly the divergence in placental development after a common inciting event of defective deep placentation may shed light on new targets for prevention or treatment.

3.
Brain Res ; 1829: 148772, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38244754

RESUMEN

Despite Alzheimer's disease (AD) disproportionately affecting women, the mechanisms remain elusive. In AD, microglia undergo 'metabolic reprogramming', which contributes to microglial dysfunction and AD pathology. However, how sex and age contribute to metabolic reprogramming in microglia is understudied. Here, we use metabolic imaging, transcriptomics, and metabolic assays to probe age- and sex-associated changes in brain and microglial metabolism. Glycolytic and oxidative metabolism in the whole brain was determined using Fluorescence Lifetime Imaging Microscopy (FLIM). Young female brains appeared less glycolytic than male brains, but with aging, the female brain became 'male-like.' Transcriptomic analysis revealed increased expression of disease-associated microglia (DAM) genes (e.g., ApoE, Trem2, LPL), and genes involved in glycolysis and oxidative metabolism in microglia from aged females compared to males. To determine whether estrogen can alter the expression of these genes, BV-2 microglia-like cell lines, which abundantly express DAM genes, were supplemented with 17ß-estradiol (E2). E2 supplementation resulted in reduced expression of DAM genes, reduced lipid and cholesterol transport, and substrate-dependent changes in glycolysis and oxidative metabolism. Consistent with the notion that E2 may suppress DAM-associated factors, LPL activity was elevated in the brains of aged female mice. Similarly, DAM gene and protein expression was higher in monocyte-derived microglia-like (MDMi) cells derived from middle-aged females compared to age-matched males and was responsive to E2 supplementation. FLIM analysis of MDMi from young and middle-aged females revealed reduced oxidative metabolism and FAD+ with age. Overall, our findings show that altered metabolism defines age-associated changes in female microglia and suggest that estrogen may inhibit the expression and activity of DAM-associated factors, which may contribute to increased AD risk, especially in post-menopausal women.


Asunto(s)
Enfermedad de Alzheimer , Microglía , Persona de Mediana Edad , Humanos , Masculino , Femenino , Ratones , Animales , Anciano , Microglía/metabolismo , Enfermedad de Alzheimer/metabolismo , Envejecimiento , Encéfalo/metabolismo , Estrógenos/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/metabolismo
4.
STAR Protoc ; 5(1): 102849, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38324447

RESUMEN

Studying fetal hematopoiesis is challenging as hematopoiesis transitions from the liver to bone marrow. Obtaining human samples is not possible, and small animal models may not provide sufficient biological material. Here, we present a protocol for isolating hematopoietic cells from the nonhuman primate fetal liver and bone. We describe steps for using cells from the same fetus for fluorescence lifetime imaging microscopy to measure metabolism, assessing cellular function, and flow cytometry for immunophenotyping at the single-cell level. For complete details on the use and execution of this protocol, please refer to Nash et al. (2023).1.


Asunto(s)
Leucocitos , Hígado , Animales , Humanos , Inmunofenotipificación , Feto , Primates
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA