Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Nature ; 577(7792): 652-655, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31969700

RESUMEN

The uranyl ion (UO22+; U(VI) oxidation state) is the most common form of uranium found in terrestrial and aquatic environments and is a central component in nuclear fuel processing and waste remediation efforts. Uranyl capture from either seawater or nuclear waste has been well studied and typically relies on extremely strong chelating/binding affinities to UO22+ using chelating polymers1,2, porous inorganic3-5 or carbon-based6,7 materials, as well as homogeneous8 compounds. By contrast, the controlled release of uranyl after capture is less established and can be difficult, expensive or destructive to the initial material2,9. Here we show how harnessing the redox-switchable chelating and donating properties of an ortho-substituted closo-carborane (1,2-(Ph2PO)2-1,2-C2B10H10) cluster molecule can lead to the controlled chemical or electrochemical capture and release of UO22+ in monophasic (organic) or biphasic (organic/aqueous) model solvent systems. This is achieved by taking advantage of the increase in the ligand bite angle when the closo-carborane is reduced to the nido-carborane, resulting in C-C bond rupture and cage opening. The use of electrochemical methods for uranyl capture and release may complement existing sorbent and processing systems.

2.
J Am Chem Soc ; 145(6): 3786-3794, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36738474

RESUMEN

The synthesis, isolation, and reactivity of a cationic, geometrically constrained σ3-P compound in the hexaphenyl-carbodiphosphoranyl-based pincer-type ligand (1+) are reported. 1+ reacts with electron-poor fluoroarenes via an oxidative addition-type reaction of the C-F bond to the PIII-center, yielding new fluorophosphorane-type species (PV). This reactivity of 1+ was used in the catalytic hydrodefluorination of Ar-F bonds with PhSiH3, and in a catalytic C-N bond-forming cross-coupling reactions between fluoroarenes and aminosilanes. Importantly, 1+ in these catalytic reactions closely mimics the mode of action of the transition metal-based catalysts.

3.
Small ; 19(12): e2205994, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36638248

RESUMEN

The interest in development of non-graphitic polymeric carbon nitrides (PCNs), with various C-to-N ratios, having tunable electronic, optical, and chemical properties is rapidly increasing. Here the first self-propagating combustion synthesis methodology for the facile preparation of novel porous PCN materials (PCN3-PCN7) using new nitrogen-rich triazene-based precursors is reported. This methodology is found to be highly precursor dependent, where variations in the terminal functional groups in the newly designed precursors (compounds 3-7) lead to different combustion behaviors, and morphologies of the resulted PCNs. The foam-type highly porous PCN5, generated from self-propagating combustion of 5 is comprehensively characterized and shows a C-to-N ratio of 0.67 (C3 N4.45 ). Thermal analyses of PCN5 formulations with ammonium perchlorate (AP) reveal that PCN5 has an excellent catalytic activity in the thermal decomposition of AP. This catalytic activity of PCN5 is further evaluated in a closer-to-application scenario, showing an increase of 18% in the burn rate of AP-Al-HTPB (with 2 wt% of PCN5) solid composite propellant. The newly developed template- and additive-free self-propagating combustion synthetic methodology using specially designed nitrogen-rich precursors should provide a novel platform for the preparation of non-graphitic PCNs with a variety of building block chemistries, morphologies, and properties suitable for a broad range of technologies.

4.
Chemistry ; 29(42): e202300798, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37186082

RESUMEN

Hydrosilylation of C=C double and C≡C triple bonds is one of the most widely used processes in organosilicon chemistry, mostly catalyzed by Pt-based complexes. Herein, the synthesis of a dicationic Zn+2 -based complex with a tripodal tris(2-pyridylmethyl)amine (TPA) ligand is reported which was found to be a highly chemoselective catalyst for hydrosilylation reactions of alkynes. Mechanistic studies revealed that unlike typical Zn-catalyzed hydrosilylation reactions where the key step is the activation of the Si-H bond, this system catalyzes the hydrosilylation reaction through the activation of C≡C triple bonds, which presumably is the reason for its high chemoselectivity. Remarkably, the hydrosilylation of alkynes could be performed in the presence of alkenes and other functional groups that remained intact in this reaction.

5.
J Org Chem ; 88(22): 15983-15988, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37906127

RESUMEN

We report the synthesis of a series of the oxygen-depleted conjugated 5,5'-Bicalix[4]arene compounds bearing various substituents at the terminal positions of the conjugated chain and their fluorescence response to the presence of a cationic N-methylpyridinium guest. The complexation of this cation within the bicalixarene cavity results in the fluorescence quenching, with the host molecules bearing electron-donating groups demonstrating a stronger fluorescence response. These results show the importance of the electronic effects on the host-guest complexation within the hydrophobic calixarene scaffolds.

6.
J Am Chem Soc ; 144(13): 5965-5975, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35347986

RESUMEN

Each year, infections caused by fungal pathogens claim the lives of about 1.6 million people and affect the health of over a billion people worldwide. Among the most recently developed antifungal drugs are the echinocandins, which noncompetitively inhibit ß-glucan synthase, a membrane-bound protein complex that catalyzes the formation of the main polysaccharide component of the fungal cell wall. Resistance to echinocandins is conferred by mutations in FKS genes, which encode the catalytic subunit of the ß-glucan synthase complex. Here, we report that selective removal of the benzylic alcohol of the nonproteinogenic amino acid 3S,4S-dihydroxy-l-homotyrosine of the echinocandins anidulafungin and rezafungin, restored their efficacy against a large panel of echinocandin-resistant Candida strains. The dehydroxylated compounds did not significantly affect the viability of human-derived cell culture lines. An analysis of the efficacy of the dehydroxylated echinocandins against resistant Candida strains, which contain mutations in the FKS1 and/or FKS2 genes of the parental strains, identified amino acids of the Fks proteins that are likely to reside in proximity to the l-homotyrosine residue of the bound drug. This study describes the first example of a chemical modification strategy to restore the efficacy of echinocandin drugs, which have a critical place in the arsenal of antifungal drugs, against resistant fungal pathogens.


Asunto(s)
Antifúngicos , Farmacorresistencia Fúngica , Antifúngicos/farmacología , Farmacorresistencia Fúngica/genética , Equinocandinas/genética , Equinocandinas/farmacología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Humanos , Pruebas de Sensibilidad Microbiana , Mutación , Tirosina/análogos & derivados
7.
Angew Chem Int Ed Engl ; 61(36): e202208401, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-35830679

RESUMEN

A geometrically constrained phosphenium cation in bis(pyrrolyl)pyridine based NNN pincer type ligand (1+ ) was synthesized, isolated and its preliminary reactivity was studied with small molecules. 1+ reacts with MeOH and Et2 NH, activating the O-H and N-H bonds via a P-center/ligand assisted path. The reaction of 1+ with one equiv. of H3 NBH3 leads to its dehydrogenation producing 5. Interestingly, reaction of 1+ with an excess H3 NBH3 leads to phosphinidene (PI ) species coordinating to two BH3 molecules (6). In contrast, [1+ ][OTf] reacts with Et3 SiH by hydride abstraction yielding 1-H and Et3 SiOTf, while [1+ ][B(C6 F5 )4 ] reacts with Et3 SiH via an oxidative addition type reaction of Si-H bond to P-center, affording a new PV compound (8). However, 8 is not stable over time and degrades to a complex mixture of compounds in matter of minutes. Despite this, the ability of [1+ ][B(C6 F5 )4 ] to activate Si-H bond could still be tested in catalytic hydrosilylation of benzaldehyde, where 1+ closely mimics transition metal behaviour.

8.
J Am Chem Soc ; 143(26): 9842-9848, 2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34160218

RESUMEN

Paramagnetic metal complexes gained a lot of attention due to their participation in a number of important chemical reactions. In most cases, these complexes are dominated by 17-e metalloradicals that are associatively activated with highly reactive paramagnetic 19-e species. Molybdenum paramagnetic complexes are among the most investigated ones. While some examples of persistent 17-e Mo-centered radicals have been reported, in contrast, 19-e Mo-centered radicals are illusive species and as such could rarely be detected. In this work, the photodissociation of the [Cp(CO)3Mo]2 dimer (1) in the presence of phosphines was revisited. As a result, the first persistent, formally 19-e Mo radical with significant electron density on the Mo center (22%), Cp(CO)3Mo•PPh2(o-C2B10H11) (5b), was generated and characterized by EPR spectroscopy and MS as well as studied by DFT calculations. The stabilization of 5b was likely achieved due to a unique electron-withdrawing effect of the o-carboranyl substituent at the phosphorus center.

9.
Inorg Chem ; 60(15): 10909-10922, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34292708

RESUMEN

In recent years, development of new energetic compounds and formulations, suitable for ignition with relatively low-power lasers, is a highly active and competitive field of research. The main goal of these efforts is focused on achieving and providing much safer solutions for various detonator and initiator systems. In this work, we prepared, characterized, and studied thermal and ignition properties of a new laser-ignitable compound, based on the 5,6-bis(ethylnitroamino)-N'2,N'3-dihydroxypyrazine-2,3-bis(carboximidamide) (DS3) proligand. This new energetic proligand was prepared in three steps, starting with 5,6-bis(ethylamino)-pyrazine-2,3-dicarbonitrile. Crystallography studies of the DS3-derived Cu(II) complex (DS4) revealed a unique stacked antenna-type structure of the latter compound. DS4 has an exothermal temperature of 154.5 °C and was calculated to exhibit a velocity of detonation of 6.36 km·s-1 and a detonation pressure of 15.21 GPa. DS4 showed properties of a secondary explosive, having sensitivity to impact, friction, and electrostatic discharge of 8 J, 360 N, and 12 mJ, respectively. In order to study the mechanism of ignition by a laser (using a diode laser, 915 nm), we conducted a set of experiments that enabled us to characterize a photothermal ignition mechanism. Furthermore, we found that a single pulse, with a time duration of 1 ms and with a total energy of 4.6 mJ, was sufficient for achieving a consistent and full ignition of DS4. Dual-pulse experiments, with variable time intervals between the laser pulses, showed that DS4 undergoes ignition via a photothermal mechanism. Finally, calculating the chemical mechanism of the formation of the complex DS4 and modeling its anhydrous and hydrated crystal structures (density functional theory calculations using Gaussian and HASEM software) allowed us to pinpoint a more precise location of water molecules in experimental crystallographic data. These results suggest that DS4 has potential for further development to a higher technology readiness level and for integration into small-size safe detonator systems as for many civil, aerospace, and defense applications.

10.
Org Biomol Chem ; 19(25): 5544-5550, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34060566

RESUMEN

Hydrosilylation of C[double bond, length as m-dash]C double and C[triple bond, length as m-dash]C triple bonds is one of the most widely used processes in organosilicon chemistry, mostly catalyzed by Pt-based complexes. We report here the synthesis of an air-stable dicationic Zn2+-based complex in a hemilabile tris(2-methyl-6-pyridylmethyl) phosphine (TmPPh) ligand, 12+[B(C6F5)4]2. When heated, 12+[B(C6F5)4]2 activates Si-H bonds reversibly via ligand/metal cooperation between Lewis acidic Zn2+ and Lewis basic N centers in a frustrated Lewis pair (FLP) type fashion. Consequently, 12+[B(C6F5)4]2 was found to be an effective catalyst for hydrosilylation reactions of C[double bond, length as m-dash]C double and C[triple bond, length as m-dash]C triple bonds. Remarkably, these hydrosilylation reactions can be loaded under aerobic conditions, as well as, in some cases, work under neat conditions. The mechanism of the activation of the Si-H bond and the hydrosilylation reaction is proposed based on experiments and density functional theory (DFT) calculations.

11.
Inorg Chem ; 59(14): 10343-10352, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32643930

RESUMEN

We report the synthesis of new Lewis-acidic boranes tethered to redox-active vanadium centers, (Ph2N)3V(µ-N)B(C6F5)2 (1a) and (N(CH2CH2N(C6F5))3)V(µ-N)B(C6F5)2 (1b). Redox control of the VIV/V couple resulted in switchable borane versus "hidden" boron radical reactivity, mimicking frustrated Lewis versus frustrated radical pair (FLP/FRP) chemistry, respectively. Whereas heterolytic FLP-type addition reactions were observed with the VV complex (1b) in the presence of a bulky phosphine, homolytic peroxide, or Sn-hydride bond cleavage reactions were observed with the VIV complex, [CoCp2*][(N(CH2CH2N(C6F5))3)V(µ-N)B(C6F5)2] (3b), indicative of boron radical anion character. The extent of radical character was probed by spectroscopic and computational means. Together, these results demonstrate that control of the VIV/V oxidation states allows these compounds to access reactivity observed in both FLP and FRP chemistry.

12.
Angew Chem Int Ed Engl ; 58(16): 5302-5306, 2019 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-30786135

RESUMEN

We describe the preparation of the first water-soluble pH-responsive supramolecular hexagonal boxes (SHBs) based on multiple charge-assisted hydrogen bonds between peramino-pillar[6]arenes 2 with the molecular "lid" mellitic acid (1 a). The interaction between 2 and 1 a, as well as the other "lids" pyromellitic and trimesic acids (1 b and 1 c, respecively) were studied by a combination of experimental and computational methods. Interestingly, the addition of 1 a to the complexes of the protonated form of pillar[6]arene 2, that is, 3, with bis-sulfonate 4 a or 4 b, immediately led to guest escape along with the formation of closed 1 a2 2 supramolecular boxes. Moreover, the process of the openning and closing of the supramolecular boxes along with threading and escaping of the guests, respectively, was found to be reversible and pH-responsive. This study paves the way for the easy and modular preparation of different SHBs that may have myriad applications.

13.
J Am Chem Soc ; 140(45): 15375-15383, 2018 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-30382703

RESUMEN

Recent computational studies suggest that the phosphate support in the commercial vanadium phosphate oxide (VPO) catalyst may play a critical role in initiating butane C-H bond activation through a mechanism termed reduction-coupled oxo activation (ROA) similar to proton-coupled electron transfer (PCET); however, no experimental evidence exists to support this mechanism. Herein, we present molecular model compounds, (Ph2N)3V═N-P(O)Ar2 (Ar = C6F5 (2a), Ph (2b)), which are reactive to both weak H atom donors and a Me3Si• (a "bulky hydrogen atom" surrogate) donor, 1,4-bis(trimethylsilyl)pyrazine. While the former reaction led to product decomposition, the latter resulted in the isolation of the reduced, silylated complexes (Ph2N)3V-N═P(OSiMe3)Ar2 (3a/b). Detailed analyses of possible reaction pathways, involving the isolation and full characterization of potential stepwise square-scheme intermediates, as well as the determination of minimum experimentally and computationally derived thermochemical values, are described. We find that stepwise electron transfer (ET) + silylium transfer (ST) or concerted EST mechanisms are most likely. This study provides the first experimental evidence supporting a ROA mechanism and may inform future studies in homogeneous or heterogeneous C-H activation chemistry, as well as open up a possible new avenue for main group/transition metal cooperative redox reactivity.

14.
Proc Natl Acad Sci U S A ; 111(30): 10917-21, 2014 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-25002489

RESUMEN

A major advance in main-group chemistry in recent years has been the emergence of the reactivity of main-group species that mimics that of transition metal complexes. In this report, the Lewis acidic phosphonium salt [(C6F5)3PF][B(C6F5)4] 1 is shown to catalyze the dehydrocoupling of silanes with amines, thiols, phenols, and carboxylic acids to form the Si-E bond (E = N, S, O) with the liberation of H2 (21 examples). This catalysis, when performed in the presence of a series of olefins, yields the concurrent formation of the products of dehydrocoupling and transfer hydrogenation of the olefin (30 examples). This reactivity provides a strategy for metal-free catalysis of olefin hydrogenations. The mechanisms for both catalytic reactions are proposed and supported by experiment and density functional theory calculations.

15.
Angew Chem Int Ed Engl ; 56(17): 4744-4748, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28323372

RESUMEN

The chlorination of Si-H bonds often requires stoichiometric amounts of metal salts in conjunction with hazardous reagents, such as tin chlorides, Cl2 , and CCl4 . The catalytic chlorination of silanes often involves the use of expensive transition-metal catalysts. By a new simple, selective, and highly efficient catalytic metal-free method for the chlorination of Si-H bonds, mono-, di-, and trihydrosilanes were selectively chlorinated in the presence of a catalytic amount of B(C6 F5 )3 or Et2 O⋅B(C6 F5 )3 and HCl with the release of H2 as a by-product. The hydrides in di- and trihydrosilanes could be selectively chlorinated by HCl in a stepwise manner when Et2 O⋅B(C6 F5 )3 was used as the catalyst. A mechanism is proposed for these catalytic chlorination reactions on the basis of competition experiments and density functional theory (DFT) calculations.

16.
J Am Chem Soc ; 137(23): 7298-301, 2015 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-26030269

RESUMEN

A highly Lewis acidic diphosphonium dication [(C10H6)(Ph2P)2](2+) (1), in combination with a Lewis basic phosphine, acts as a purely phosphorus-based frustrated Lewis pair (FLP) and abstracts hydride from [HB(C6F5)3](-) and Et3SiH demonstrating the remarkable hydridophilicity of 1. The P-based FLP is also shown to activate H2 and C-H bonds.

17.
Chemistry ; 21(17): 6491-500, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25758303

RESUMEN

The electrophilic phosphonium salt, [(C6 F5 )3 PF][B(C6 F5 )4 ], catalyses the efficient hydrosilylation of ketones, imines and nitriles at room temperature. In the presence of this catalyst, adding one equivalent of hydrosilane to a nitrile yields a silylimine product, whereas adding a second equivalent produces the corresponding disilylamine. [(C6 F5 )3 PCl][B(C6 F5 )4 ] and [(C6 F5 )3 PBr][B(C6 F5 )4 ] are also synthesised and tested as catalysts. Competition experiments demonstrate that the reaction exhibits selectivity for the following functional groups in order of preference: ketone>nitrile>imine>olefin. Computational studies reveal the reaction mechanism to involve initial activation of the Si-H bond by its interaction with the phosphonium centre. The activated complex then acts cooperatively on the unsaturated substrate.

18.
Angew Chem Int Ed Engl ; 54(35): 10178-82, 2015 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-26178268

RESUMEN

The combination of phosphorus(V)-based Lewis acids with diaryl amines and diaryl silylamines promotes reversible activation of dihydrogen and can be further exploited in metal-free catalytic olefin hydrogenation. Combined experimental and density functional theory (DFT) studies suggest a frustrated Lewis pair type activation mechanism.

19.
Nat Chem ; 16(8): 1261-1266, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38937592

RESUMEN

Catalytic processes are largely dominated by transition-metal complexes. Main-group compounds that can mimic the behaviour of the transition-metal complexes are of great interest due to their potential to substitute or complement transition metals in catalysis. While a few main-group molecular centres were shown to activate dihydrogen via the oxidative addition process, catalytic hydrogenation using these species has remained challenging. Here we report the synthesis, isolation and full characterization of the geometrically constrained phosphenium cation with the 2,6-bis(o-carborano)pyridine pincer-type ligand. Notably, this cation can activate the H-H bond by oxidative addition to a single PIII cationic centre, producing a dihydrophosphonium cation. This phosphenium cation is also capable of catalysing hydrogenation reactions of C=C double bonds and fused aromatic systems, making it a main-group compound that can both activate H2 at a single molecular main-group centre and be used for catalytic hydrogenation. This finding shows the potential of main-group compounds, in particular phosphorus-based compounds, to serve as metallomimetic hydrogenation catalysts.

20.
Org Lett ; 26(27): 5731-5735, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38935556

RESUMEN

Calixpyrenes, calix[4]arenes incorporating one or two pyrene moieties as a part of their hydrophobic cavities, have been prepared and fully characterized. Distally di-O-propoxy diether of the calix dipyrene, which exists in the pinched cone conformation with nearly parallel pyrene moieties, demonstrates strongly enhanced binding of an organic cation (N-methylpyridinium) compared with the analogous diethers of the parent calix[4]arene.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA