RESUMEN
OBJECTIVE: Panic attacks are an impairing mental health problem that affects 11% of adults every year. Current criteria describe them as occurring without warning, despite evidence suggesting individuals can often identify attack triggers. We aimed to prospectively explore qualitative and quantitative factors associated with the onset of panic attacks. RESULTS: Of 87 participants, 95% retrospectively identified a trigger for their panic attacks. Worse individually reported mood and state-level mood, as indicated by Twitter ratings, were related to greater likelihood of next-day panic attack. In a subsample of participants who uploaded their wearable sensor data (n = 32), louder ambient noise and higher resting heart rate were related to greater likelihood of next-day panic attack. CONCLUSIONS: These promising results suggest that individuals who experience panic attacks may be able to anticipate their next attack which could be used to inform future prevention and intervention efforts.
RESUMEN
Online misogyny has become a fixture in female politicians' lives. Backlash theory suggests that it may represent a threat response prompted by female politicians' counterstereotypical, power-seeking behaviors. We investigated this hypothesis by analyzing Twitter references to Hillary Clinton before, during, and after her presidential campaign. We collected a corpus of over 9 million tweets from 2014 to 2018 that referred to Hillary Clinton, and employed an interrupted time series analysis on the relative frequency of misogynistic language within the corpus. Prior to 2015, the level of misogyny associated with Clinton decreased over time, but this trend reversed when she announced her presidential campaign. During the campaign, misogyny steadily increased and only plateaued after the election, when the threat of her electoral success had subsided. These findings are consistent with the notion that online misogyny towards female political nominees is a form of backlash prompted by their ambition for power in the political arena.
Asunto(s)
Medios de Comunicación Sociales , Humanos , Femenino , Política , Lenguaje , Personal Administrativo , Análisis de Series de Tiempo InterrumpidoRESUMEN
Natural language processing of medical records offers tremendous potential to improve the patient experience. Sentiment analysis of clinical notes has been performed with mixed results, often highlighting the issue that dictionary ratings are not domain specific. Here, for the first time, we re-calibrate the labMT sentiment dictionary on 3.5M clinical notes describing 10,000 patients diagnosed with lung cancer at the Department of Veterans Affairs. The sentiment score of notes was calculated for two years after date of diagnosis and evaluated against a lab test (platelet count) and a combination of data points (treatments). We found that the oncology specific labMT dictionary, after re-calibration for the clinical oncology domain, produces a promising signal in notes that can be detected based on a comparative analysis to the aforementioned parameters.
Asunto(s)
Neoplasias Pulmonares , Veteranos , Humanos , Análisis de Sentimientos , Registros Médicos , Actitud , Procesamiento de Lenguaje Natural , Neoplasias Pulmonares/diagnósticoRESUMEN
The metabolic theory of ecology (MTE) predicts the effects of body size and temperature on metabolism through considerations of vascular distribution networks and biochemical kinetics. MTE has also been extended to characterise processes from cellular to global levels. MTE has generated both enthusiasm and controversy across a broad range of research areas. However, most efforts that claim to validate or invalidate MTE have focused on testing predictions. We argue that critical evaluation of MTE also requires strong tests of both its theoretical foundations and simplifying assumptions. To this end, we synthesise available information and find that MTE's original derivations require additional assumptions to obtain the full scope of attendant predictions. Moreover, although some of MTE's simplifying assumptions are well supported by data, others are inconsistent with empirical tests and even more remain untested. Further, although many predictions are empirically supported on average, work remains to explain the often large variability in data. We suggest that greater effort be focused on evaluating MTE's underlying theory and simplifying assumptions to help delineate the scope of MTE, generate new theory and shed light on fundamental aspects of biological form and function.
Asunto(s)
Metabolismo Energético , Modelos Biológicos , Animales , Tamaño Corporal , Mamíferos/anatomía & histología , Mamíferos/metabolismo , Plantas/anatomía & histología , Plantas/metabolismo , TemperaturaRESUMEN
Human mortality is in part a function of multiple socioeconomic factors that differ both spatially and temporally. Adjusting for other covariates, the human lifespan is positively associated with household wealth. However, the extent to which mortality in a geographical region is a function of socioeconomic factors in both that region and its neighbors is unclear. There is also little information on the temporal components of this relationship. Using the districts of Hong Kong over multiple census years as a case study, we demonstrate that there are differences in how wealth indicator variables are associated with longevity in (a) areas that are affluent but neighbored by socially deprived districts versus (b) wealthy areas surrounded by similarly wealthy districts. We also show that the inclusion of spatially-distributed variables reduces uncertainty in mortality rate predictions in each census year when compared with a baseline model. Our results suggest that geographic mortality models should incorporate nonlocal information (e.g., spatial neighbors) to lower the variance of their mortality estimates, and point to a more in-depth analysis of sociospatial spillover effects on mortality rates.
Asunto(s)
Mortalidad , Factores Socioeconómicos , Teorema de Bayes , Hong Kong/epidemiología , Humanos , Modelos EstadísticosRESUMEN
Although population structure has long been recognized as relevant to the spread of infectious disease, traditional mathematical models have understated the role of nonhomogenous mixing in populations with geographical and social structure. Recently, a wide variety of spatial and network models have been proposed that incorporate various aspects of interaction structure among individuals. However, these more complex models necessarily suffer from limited tractability, rendering general conclusions difficult to draw. In seeking a compromise between parsimony and realism, we introduce a class of metapopulation models in which we assume homogeneous mixing holds within local contexts, and that these contexts are embedded in a nested hierarchy of successively larger domains. We model the movement of individuals between contexts via simple transport parameters and allow diseases to spread stochastically. Our model exhibits some important stylized features of real epidemics, including extreme size variation and temporal heterogeneity, that are difficult to characterize with traditional measures. In particular, our results suggest that when epidemics do occur the basic reproduction number R(0) may bear little relation to their final size. Informed by our model's behavior, we suggest measures for characterizing epidemic thresholds and discuss implications for the control of epidemics.