Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Pharmacol Exp Ther ; 380(1): 1-14, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34625464

RESUMEN

Opioid use disorder reflects a major public health crisis of morbidity and mortality in which opioid withdrawal often contributes to continued use. However, current medications that treat opioid withdrawal symptoms are limited by their abuse liability or lack of efficacy. Although cannabinoid 1 (CB1) receptor agonists, including Δ9-tetrahydrocannabinol, ameliorate opioid withdrawal in both clinical and preclinical studies of opioid dependence, this strategy elicits cannabimimetic side effects as well as tolerance and dependence after repeated administration. Alternatively, CB1 receptor positive allosteric modulators (PAMs) enhance CB1 receptor signaling and show efficacy in rodent models of pain and cannabinoid dependence but lack cannabimimetic side effects. We hypothesize that the CB1 receptor PAM ZCZ011 attenuates naloxone-precipitated withdrawal signs in opioid-dependent mice. Accordingly, male and female mice given an escalating dosing regimen of oxycodone, a widely prescribed opioid, and challenged with naloxone displayed withdrawal signs that included diarrhea, weight loss, jumping, paw flutters, and head shakes. ZCZ011 fully attenuated naloxone-precipitated withdrawal-induced diarrhea and weight loss and reduced paw flutters by approximately half, but its effects on head shakes were unreliable, and it did not affect jumping behavior. The antidiarrheal and anti-weight loss effects of ZCZ0111 were reversed by a CB1 not a cannabinoid receptor type 2 receptor antagonist and were absent in CB1 (-/-) mice, suggesting a necessary role of CB1 receptors. Collectively, these results indicate that ZCZ011 completely blocked naloxone-precipitated diarrhea and weight loss in oxycodone-dependent mice and suggest that CB1 receptor PAMs may offer a novel strategy to treat opioid dependence. SIGNIFICANCE STATEMENT: Opioid use disorder represents a serious public health crisis in which current medications used to treat withdrawal symptoms are limited by abuse liability and side effects. The CB1 receptor positive allosteric modulator (PAM) ZCZ011, which lacks overt cannabimimetic behavioral effects, ameliorated naloxone-precipitated withdrawal signs through a CB1 receptor mechanism of action in a mouse model of oxycodone dependence. These results suggest that CB1 receptor PAMs may represent a viable strategy to treat opioid withdrawal.


Asunto(s)
Antidiarreicos/uso terapéutico , Agonistas de Receptores de Cannabinoides/uso terapéutico , Diarrea/tratamiento farmacológico , Indoles/uso terapéutico , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico , Tiofenos/uso terapéutico , Regulación Alostérica , Animales , Diarrea/etiología , Femenino , Masculino , Ratones , Ratones Endogámicos ICR , Naloxona/efectos adversos , Antagonistas de Narcóticos/efectos adversos , Narcóticos/toxicidad , Trastornos Relacionados con Opioides/tratamiento farmacológico , Trastornos Relacionados con Opioides/etiología , Oxicodona/toxicidad , Receptor Cannabinoide CB1/metabolismo , Síndrome de Abstinencia a Sustancias/etiología
2.
Pharmacol Biochem Behav ; 223: 173524, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36740023

RESUMEN

Using a songbird, zebra finches, as a developmental drug abuse model we found previously that cannabinoid agonists administered during the sensorimotor period of vocal learning (50-75 days of age) persistently alter song patterns and cocaine responsiveness in adulthood. However, these effects were not produced in adults exposed to similar treatment regimens. Currently, we have used the MAGL inhibitor, JZL184, to test whether enhanced endocannabinoid signaling may similarly alter cocaine responsiveness. We found that, as expected and consistent with prior results, repeated developmental (but not adult) treatments with Δ9-tetrahydrocannabinol (THC, 3 mg/kg QD IM) resulted in increased time spent in cocaine-paired chambers. Unexpectedly and in contrast, repeated developmental JZL184 (4 mg/kg QD IM) treatments decreased time spent in cocaine-conditioned chambers. That is, young finches repeatedly treated with JZL184 avoided cocaine-paired chambers later in adulthood, while similar development treatments with THC had the opposite effect. To begin to identify brain regions that may underly this differential responsiveness we used c-Fos expression as a marker of neuronal activity. Differences in c-Fos expression patterns following placement of cocaine-conditioned finches into vehicle- vs. cocaine-paired chambers suggest distinct involvement of circuits through striatal and amygdaloid regions in respective effects of THC and JZL184. Results demonstrate that, like exogenous cannabinoid exposure, inhibition of MAGL activity during late post-natal development persistently alters behavior in adulthood. Contrasting effects of THC vs. MAGL inhibition with JZL184 suggests the latter alters development of brain regions to favor promotion of aversive rather than appetitive cocaine responsiveness later in adulthood.


Asunto(s)
Cannabinoides , Cocaína , Dronabinol/farmacología , Cannabinoides/farmacología , Piperidinas/farmacología , Benzodioxoles/farmacología , Endocannabinoides/metabolismo
3.
Pharmacol Biochem Behav ; 185: 172764, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31449820

RESUMEN

Zebra finches are songbirds that learn vocal patterns during a sensitive period of development that approximates adolescence. Exposure of these animals to a cannabinoid agonist during their period of sensorimotor vocal learning alters song patterns produced in adulthood. Thus, songbirds have unique value in studying developmental effects of drug exposure on a naturally learned behavior. A missing feature of this animal model has been a method to study drug reinforcement of behavior. To address this gap we have adapted place conditioning methods, used previously to determine that singing behavior is rewarding, to study cocaine reinforcement of behavior. We have found that cocaine dose-dependently reinforces both place conditioning and aversion at potencies consistent with those observed in mammalian species. Use of this place conditioning method has allowed us to determine that, when administered during periods of sensorimotor vocal learning, delta-9-THC, but not nicotine persistently increases sensitivity to cocaine through adulthood. Establishment of this method significantly expands the songbird drug exposure model, and holds promise for better appreciation of mechanisms important to sensorimotor learning that is dependent upon successful progress through sensitive periods of CNS development.


Asunto(s)
Cocaína/farmacología , Dronabinol/farmacología , Pinzones/crecimiento & desarrollo , Aprendizaje/efectos de los fármacos , Refuerzo en Psicología , Vocalización Animal/efectos de los fármacos , Análisis de Varianza , Animales , Conducta Animal/efectos de los fármacos , Cocaína/administración & dosificación , Condicionamiento Clásico/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Dronabinol/administración & dosificación , Femenino , Masculino , Nicotina/administración & dosificación , Nicotina/farmacología , Recompensa , Corteza Sensoriomotora/efectos de los fármacos , Factores Sexuales
4.
Neuropharmacology ; 158: 107716, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31325430

RESUMEN

Cannabidiol (CBD), a non-euphorigenic compound derived from Cannabis, shows promise for improving recovery following cerebral ischemia and has recently been shown effective for the treatment of childhood seizures caused by Dravet and Lennox-Gastaut syndromes. Given evidence for activity to mitigate effects of CNS insult and dysfunction, we considered the possibility that CBD may also protect and improve functional recovery of a complex learned behavior. To test this hypothesis, we have applied a songbird, the adult male zebra finch, as a novel pre-clinical animal model. Their learned vocalizations were temporarily disrupted with bilateral microlesions of HVC (used as a proper name) a pre-vocal motor cortical-like brain region that drives song. These microlesions destroy about 10% of HVC, and temporarily impair song production, syntax and phonology for about seven days. Recovery requires sensorimotor learning as it depends upon auditory feedback. Four CBD doses (0, 1, 10 and 100 mg/kg) within three surgery conditions (microlesion, no-microlesion, sham-microlesion) were evaluated (n = 5-6). Birds were recorded over 20 days: three baseline; six pre-microlesion drug treatment days and; 11 post-microlesion treatment and recovery days. Results indicate 10 and 100 mg/kg CBD effectively reduced the time required to recover vocal phonology and syntax. In the case of phonology, the magnitude of microlesion-related disruptions were also reduced. These results suggest CBD holds promise to improve functional recovery of complex learned behaviors following brain injury, and represent establishment of an important new animal model to screen drugs for efficacy to improve vocal recovery.


Asunto(s)
Lesiones Encefálicas/fisiopatología , Cannabidiol/farmacología , Centro Vocal Superior/lesiones , Aprendizaje/efectos de los fármacos , Recuperación de la Función/efectos de los fármacos , Vocalización Animal , Animales , Pinzones , Masculino , Modelos Animales , Pájaros Cantores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA