Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chimia (Aarau) ; 65(9): 667-71, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22026176

RESUMEN

The Laboratory of Computational Chemistry and Biochemistry is active in the development and application of first-principles based simulations of complex chemical and biochemical phenomena. Here, we review some of our recent efforts in extending these methods to larger systems, longer time scales and increased accuracies. Their versatility is illustrated with a diverse range of applications, ranging from the determination of the gas phase structure of the cyclic decapeptide gramicidin S, to the study of G protein coupled receptors, the interaction of transition metal based anti-cancer agents with protein targets, the mechanism of action of DNA repair enzymes, the role of metal ions in neurodegenerative diseases and the computational design of dye-sensitized solar cells. Many of these projects are done in collaboration with experimental groups from the Institute of Chemical Sciences and Engineering (ISIC) at the EPFL.


Asunto(s)
Biología Computacional/métodos , Biología Computacional/tendencias , Modelos Químicos , Modelos Moleculares , Simulación de Dinámica Molecular/tendencias , Diseño de Fármacos , Conformación Proteica
3.
J Chem Theory Comput ; 10(1): 412-22, 2014 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26579920

RESUMEN

We extended a previously developed force matching approach to systems with covalent QM/MM boundaries and describe its user-friendly implementation in the publicly available software package CPMD. We applied this approach to the challenging case of the retinal protonated Schiff base in dark state bovine rhodopsin. We were able to develop a highly accurate force field that is able to capture subtle structural changes within the chromophore that have a pronounced influence on the optical properties. The optical absorption spectrum calculated from configurations extracted from a MD trajectory using the new force field is in excellent agreement with QM/MM and experimental references.

4.
J Chem Theory Comput ; 9(2): 955-64, 2013 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-26588739

RESUMEN

In this work we assess the performance of different dispersion-corrected density functional theory (DFT) approaches (M06, M06-2X, DFT-D3, and DCACP) in reproducing high-level wave function based benchmark calculations on the weakly bound halogen dimers X2···X2 and X2···Ar (for X = F, Cl, Br, and I), as well as the prototype halogen bonded complexes H3CX···OCH2 (X = Cl, Br, I). In spite of the generally good performance of all tested methods for weakly bound systems, their performance for halogen-containing compounds varies largely. We find maximum errors in the energies with respect to the CCSD(T) reference values of 0.13 kcal/mol for DCACP, 0.22 kcal/mol for M06-2X, 0.47 kcal/mol for BLYP-D3, and 0.77 kcal/mol for M06. The root-mean-square deviations are 0.13 kcal/mol for DCACP and M06-2X, 0.44 kcal/mol for M06, and 0.51 kcal/mol for BLYP-D3.

5.
Faraday Discuss ; 163: 189-203; discussion 243-75, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24020203

RESUMEN

Cation-pi interactions such as Lys(+)-Trp, are highly abundant structural motifs in proteins. Both, experimental and theoretical studies of small prototypical gas phase systems, H+Trp, H+Trp x (H2O)n and H+Gly-Trp, indicate such an arrangement as potential hot spot for photodamage and photoinstability. Here, we study the photodynamical properties of a Lys(+)-Trp pair in the protein human serum albumin (HSA) using nonadiabatic mixed time-dependent density functional theory/molecular mechanics simulations (TDDFT/MM). These simulations show that the findings for small protonated Trp complexes are largely transferable to a more complex protein environment. Under partially hydrated ("dry" conditions), when the -NH3+ head group is not fully solvated, photoexcitation of the tryptophan leads indeed to rapid photodissociation of the proximal charged amino group. In contrast, photostability is well maintained under fully solvated conditions when the lysine head group is fully hydrogen-bonded. In this case, photodynamics takes place in a pi-pi* state without interference of fast dissociative sigma*C-N) or sigma*N-H channels. These results highlight the crucial role of hydrogen bonds in ensuring the photostability of essential biological building blocks.


Asunto(s)
Estabilidad Proteica , Triptófano/química , Secuencias de Aminoácidos , Humanos , Enlace de Hidrógeno , Procesos Fotoquímicos , Conformación Proteica , Albúmina Sérica/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA