Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Mol Cell ; 63(4): 621-632, 2016 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-27499296

RESUMEN

Mitochondria are essential for numerous cellular processes, yet hundreds of their proteins lack robust functional annotation. To reveal functions for these proteins (termed MXPs), we assessed condition-specific protein-protein interactions for 50 select MXPs using affinity enrichment mass spectrometry. Our data connect MXPs to diverse mitochondrial processes, including multiple aspects of respiratory chain function. Building upon these observations, we validated C17orf89 as a complex I (CI) assembly factor. Disruption of C17orf89 markedly reduced CI activity, and its depletion is found in an unresolved case of CI deficiency. We likewise discovered that LYRM5 interacts with and deflavinates the electron-transferring flavoprotein that shuttles electrons to coenzyme Q (CoQ). Finally, we identified a dynamic human CoQ biosynthetic complex involving multiple MXPs whose topology we map using purified components. Collectively, our data lend mechanistic insight into respiratory chain-related activities and prioritize hundreds of additional interactions for further exploration of mitochondrial protein function.


Asunto(s)
Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Mapeo de Interacción de Proteínas/métodos , Mapas de Interacción de Proteínas , Proteómica/métodos , Bases de Datos de Proteínas , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Proteínas Mitocondriales/genética , Interferencia de ARN , Transducción de Señal , Transfección , Ubiquinona/metabolismo
2.
J Biol Chem ; 288(36): 26209-26219, 2013 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-23864654

RESUMEN

Lysine acetylation is rapidly becoming established as a key post-translational modification for regulating mitochondrial metabolism. Nonetheless, distinguishing regulatory sites from among the thousands identified by mass spectrometry and elucidating how these modifications alter enzyme function remain primary challenges. Here, we performed multiplexed quantitative mass spectrometry to measure changes in the mouse liver mitochondrial acetylproteome in response to acute and chronic alterations in nutritional status, and integrated these data sets with our compendium of predicted Sirt3 targets. These analyses highlight a subset of mitochondrial proteins with dynamic acetylation sites, including acetyl-CoA acetyltransferase 1 (Acat1), an enzyme central to multiple metabolic pathways. We performed in vitro biochemistry and molecular modeling to demonstrate that acetylation of Acat1 decreases its activity by disrupting the binding of coenzyme A. Collectively, our data reveal an important new target of regulatory acetylation and provide a foundation for investigating the role of select mitochondrial protein acetylation sites in mediating acute and chronic metabolic transitions.


Asunto(s)
Acetil-CoA C-Acetiltransferasa/metabolismo , Mitocondrias Hepáticas/metabolismo , Proteoma/metabolismo , Sirtuina 3/metabolismo , Acetilcoenzima A/metabolismo , Acetilación , Animales , Ratones , Ratones Obesos
3.
Blood Adv ; 5(23): 5429-5438, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34673922

RESUMEN

The ASH Research Collaborative is a nonprofit organization established through the American Society of Hematology's commitment to patients with hematologic conditions and the science that informs clinical care and future therapies. The ASH Research Collaborative houses 2 major initiatives: (1) the Data Hub and (2) the Clinical Trials Network (CTN). The Data Hub is a program for hematologic diseases in which networks of clinical care delivery sites are developed in specific disease areas, with individual patient data contributed through electronic health record (EHR) integration, direct data entry through electronic data capture, and external data sources. Disease-specific data models are constructed so that data can be assembled into analytic datasets and used to enhance clinical care through dashboards and other mechanisms. Initial models have been built in multiple myeloma (MM) and sickle cell disease (SCD) using the Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) and Fast Healthcare Interoperability Resources (FHIR) standards. The Data Hub also provides a framework for development of disease-specific learning communities (LC) and testing of health care delivery strategies. The ASH Research Collaborative SCD CTN is a clinical trials accelerator that creates efficiencies in the execution of multicenter clinical trials and has been initially developed for SCD. Both components are operational, with the Data Hub actively aggregating source data and the SCD CTN reviewing study candidates. This manuscript describes processes involved in developing core features of the ASH Research Collaborative to inform the stakeholder community in preparation for expansion to additional disease areas.


Asunto(s)
Hematología , Aprendizaje del Sistema de Salud , Atención a la Salud , Registros Electrónicos de Salud , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA