Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(15): 10342-10356, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38574341

RESUMEN

In acidic HZSM-5 zeolite, the reactivity of a methanol molecule interacting with the zeolite proton is amenable to modification via coadsorbing a stochiometric amount of an electron density donor E to form the [(E)(CH3OH)(HZ)] complex. The rate of the methanol in this complex undergoing dehydration to dimethyl ether was determined for a series of E with proton affinity (PA) ranging from 659 kJ mol-1 for C6F6 to 825 kJ mol-1 for C4H8O and was found to follow the expression: Ln(Rate) - Ln(RateN2) = ß(PA - PAN2)γ, where E = N2 is the reference and ß and γ are constants. This trend is probably due to the increased stability of the solvated proton in the [(E)(CH3OH)(HZ)] complex with increasing PA. Importantly, this is also observed in steady-state flow reactions when stoichiometric quantities of E are preadsorbed on the zeolite. As demonstrated with E being D2O, the effect on methanol reactivity diminishes when E is present in excess of the [(E)(CH3OH)(HZ)] complex. It is proposed that the methanol dehydration reaction involves [(E)(CH3OH)(CH3OH)(HZ)] as the transition state, which is supported by the isotopologue distribution of the initial dimethyl ether formed when a flow of CH3OH was passed over ZSM-5 containing one CD3OH per zeolite proton. The implication of this on the mechanism of catalytic methanol dehydration on HZSM-5 is discussed.

2.
Chem Rev ; 121(15): 9450-9501, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34213328

RESUMEN

The structure, chemistry, and charge of interfaces between materials and aqueous fluids play a central role in determining properties and performance of numerous water systems. Sensors, membranes, sorbents, and heterogeneous catalysts almost uniformly rely on specific interactions between their surfaces and components dissolved or suspended in the water-and often the water molecules themselves-to detect and mitigate contaminants. Deleterious processes in these systems such as fouling, scaling (inorganic deposits), and corrosion are also governed by interfacial phenomena. Despite the importance of these interfaces, much remains to be learned about their multiscale interactions. Developing a deeper understanding of the molecular- and mesoscale phenomena at water/solid interfaces will be essential to driving innovation to address grand challenges in supplying sufficient fit-for-purpose water in the future. In this Review, we examine the current state of knowledge surrounding adsorption, reactivity, and transport in several key classes of water/solid interfaces, drawing on a synergistic combination of theory, simulation, and experiments, and provide an outlook for prioritizing strategic research directions.

3.
Proc Natl Acad Sci U S A ; 116(24): 11630-11639, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31142656

RESUMEN

A major challenge to the implementation of artificial photosynthesis (AP), in which fuels are produced from abundant materials (water and carbon dioxide) in an electrochemical cell through the action of sunlight, is the discovery of active, inexpensive, safe, and stable catalysts for the oxygen evolution reaction (OER). Multimetallic molecular catalysts, inspired by the natural photosynthetic enzyme, can provide important guidance for catalyst design, but the necessary mechanistic understanding has been elusive. In particular, fundamental transformations for reactive intermediates are difficult to observe, and well-defined molecular models of such species are highly prone to decomposition by intermolecular aggregation. Here, we present a general strategy for stabilization of the molecular cobalt-oxo cubane core (Co4O4) by immobilizing it as part of metal-organic frameworks, thus preventing intermolecular pathways of catalyst decomposition. These materials retain the OER activity and mechanism of the molecular Co4O4 analog yet demonstrate unprecedented long-term stability at pH 14. The organic linkers of the framework allow for chemical fine-tuning of activity and stability and, perhaps most importantly, provide "matrix isolation" that allows for observation and stabilization of intermediates in the water-splitting pathway.

4.
J Am Chem Soc ; 143(27): 10203-10213, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34210123

RESUMEN

A molecular description of the structure and behavior of water confined in aluminosilicate zeolite pores is a crucial component for understanding zeolite acid chemistry under hydrous conditions. In this study, we use a combination of ultrafast two-dimensional infrared (2D IR) spectroscopy and ab initio molecular dynamics (AIMD) to study H2O confined in the pores of highly hydrated zeolite HZSM-5 (∼13 and ∼6 equivalents of H2O per Al atom). The 2D IR spectrum reveals correlations between the vibrations of both terminal and H-bonded O-H groups and the continuum absorption of the excess proton. These data are used to characterize the hydrogen-bonding network within the cluster by quantifying single-, double-, and non-hydrogen-bond donor water molecules. These results are found to be in good agreement with the statistics calculated from an AIMD simulation of an H+(H2O)8 cluster in HZSM-5. Furthermore, IR spectral assignments to local O-H environments are validated with DFT calculations on clusters drawn from AIMD simulations. The simulations reveal that the excess charge is detached from the zeolite and resides near the more highly coordinated water molecules in the cluster. When they are taken together, these results unambiguously assign the complex IR spectrum of highly hydrated HZSM-5, providing quantitative information on the molecular environments and hydrogen-bonding topology of protonated water clusters under extreme confinement.

5.
Chemistry ; 27(1): 307-315, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-32926472

RESUMEN

Anionic molecular models for nonhydrolyzed and partially hydrolyzed aluminum and gallium framework sites on silica, M[OSi(OtBu)3 ]4 - and HOM[OSi(OtBu)3 ]3 - (where M=Al or Ga), were synthesized from anionic chlorides Li{M[OSi(OtBu)3 ]3 Cl} in salt metathesis reactions. Sequestration of lithium cations with [12]crown-4 afforded charge-separated ion pairs composed of monomeric anions M[OSi(OtBu)3 ]4 - with outer-sphere [([12]crown-4)2 Li]+ cations, and hydroxides {HOM[OSi(OtBu)3 ]3 } with pendant [([12]crown-4)Li]+ cations. These molecular models were characterized by single-crystal X-ray diffraction, vibrational spectroscopy, mass spectrometry and NMR spectroscopy. Upon treatment of monomeric [([12]crown-4)Li]{HOM[OSi(OtBu)3 ]3 } complexes with benzyl alcohol, benzyloxide complexes were formed, modeling a possible pathway for the formation of active sites for Meerwin-Ponndorf-Verley (MPV) transfer hydrogenations with Al/Ga-doped silica catalysts.

6.
BMC Plant Biol ; 20(1): 174, 2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-32312226

RESUMEN

BACKGROUND: Biotic and abiotic stresses are the major cause of reduced growth, persistence, and yield in agriculture. Over the past decade, RNA-Sequencing and the use of transgenics with altered expression of stress related genes have been utilized to gain a better understanding of the molecular mechanisms leading to salt tolerance in a variety of species. Identification of transcription factors that, when overexpressed in plants, improve multiple stress tolerance may be valuable for crop improvement, but sometimes overexpression leads to deleterious effects during normal plant growth. RESULTS: Brachypodium constitutively expressing the BdbZIP26:GFP gene showed reduced stature compared to wild type plants (WT). RNA-Seq analysis comparing WT and bZIP26 transgenic plants revealed 7772 differentially expressed genes (DEGs). Of these DEGs, 987 of the DEGs were differentially expressed in all three transgenic lines. Many of these DEGs are similar to those often observed in response to abiotic and biotic stress, including signaling proteins such as kinases/phosphatases, calcium/calmodulin related proteins, oxidases/reductases, hormone production and signaling, transcription factors, as well as disease responsive proteins. Interestingly, there were many DEGs associated with protein turnover including ubiquitin-related proteins, F-Box and U-box related proteins, membrane proteins, and ribosomal synthesis proteins. Transgenic and control plants were exposed to salinity stress. Many of the DEGs between the WT and transgenic lines under control conditions were also found to be differentially expressed in WT in response to salinity stress. This suggests that the over-expression of the transcription factor is placing the plant in a state of stress, which may contribute to the plants diminished stature. CONCLUSION: The constitutive expression of BdbZIP26:GFP had an overall negative effect on plant growth and resulted in stunted plants compared to WT plants under control conditions, and a similar response to WT plants under salt stress conditions. The results of gene expression analysis suggest that the transgenic plants are in a constant state of stress, and that they are trying to allocate resources to survive.


Asunto(s)
Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Brachypodium/genética , Regulación de la Expresión Génica de las Plantas , Estrés Salino/genética , Transcriptoma , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Brachypodium/metabolismo , Perfilación de la Expresión Génica , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
7.
BMC Plant Biol ; 19(1): 222, 2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-31138172

RESUMEN

BACKGROUND: Forage and turf grasses are routinely cut and grazed upon throughout their lifecycle. When grasses are cut or damaged, they rapidly release a volatile chemical cocktail called green leaf volatiles (GLV). Previously we have shown that mechanical wounding or exposure to GLV released from cut grass, activated a Lt 46 kDa mitogen-activated protein kinase (MAPK) within 3 min and a 44 kDa MAPK within 15-20 min in the model grass species Lolium temulentum (Lt). Currently very little is known concerning the perception, signaling or molecular responses associated with wound stress in grasses. Since GLV are released during wounding, we wanted to investigate what genes and signaling pathways would be induced in undamaged plants exposed to GLV. RESULTS: RNA-Seq generated transcriptome of Lolium plants exposed to GLV identified 4308 up- and 2794 down-regulated distinct differentially-expressed sequences (DES). Gene Ontology analysis revealed a strong emphasis on signaling, response to stimulus and stress related categories. Transcription factors and kinases comprise over 13% of the total DES found in the up-regulated dataset. The analysis showed a strong initial burst within the first hour of GLV exposure with over 60% of the up-regulated DES being induced. Specifically sequences annotated for enzymes involved in the biosynthesis of jasmonic acid and other plant hormones, mitogen-activated protein kinases and WRKY transcription factors were identified. Interestingly, eleven DES for ferric reductase oxidase, an enzyme involved in iron uptake and transport, were exclusively found in the down-regulated dataset. Twelve DES of interest were selected for qRT-PCR analysis; all displayed a rapid induction one hour after GLV exposure and were also strongly induced by mechanical wounding. CONCLUSION: The information gained from the analysis of this transcriptome and previous studies suggests that GLV released from cut grasses transiently primes an undamaged plant's wound stress pathways for potential oncoming damage, and may have a dual role for inter- as well as intra-plant signaling.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/fisiología , Lolium/genética , Transcriptoma , Compuestos Orgánicos Volátiles/farmacología , Perfilación de la Expresión Génica , Genes de Plantas/genética , Lolium/metabolismo , Redes y Vías Metabólicas/genética , Hojas de la Planta/química , Transducción de Señal/genética , Compuestos Orgánicos Volátiles/química
8.
BMC Plant Biol ; 18(1): 58, 2018 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-29636001

RESUMEN

BACKGROUND: bZIP transcription factors play a significant role in many aspects of plant growth and development and also play critical regulatory roles during plant responses to various stresses. Overexpression of the Brachypodium bZIP10 (Bradi1g30140) transcription factor conferred enhanced oxidative stress tolerance and increased viability when plants or cells were exposed to the herbicide paraquat. To gain a better understanding of genes involved in bZIP10 conferred oxidative stress tolerance, chromatin immunoprecipitation followed by high throughput sequencing (ChIP-Seq) was performed on BdbZIP10 overexpressing plants in the presence of oxidative stress. RESULTS: We identified a transcription factor binding motif, TGDCGACA, different from most known bZIP TF motifs but with strong homology to the Arabidopsis zinc deficiency response element. Analysis of the immunoprecipitated sequences revealed an enrichment of gene ontology groups with metal ion transmembrane transporter, transferase, catalytic and binding activities. Functional categories including kinases and phosphotransferases, cation/ion transmembrane transporters, transferases (phosphorus-containing and glycosyl groups), and some nucleoside/nucleotide binding activities were also enriched. CONCLUSIONS: Brachypodium bZIP10 is involved in zinc homeostasis, as it relates to oxidative stress.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Paraquat/farmacología , Brachypodium/metabolismo , Inmunoprecipitación de Cromatina , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos
9.
Plant Physiol ; 166(3): 1492-505, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25228396

RESUMEN

Identification of viable strategies to increase stress resistance of crops will become increasingly important for the goal of global food security as our population increases and our climate changes. Considering that resistance to oxidative stress is oftentimes an indicator of health and longevity in animal systems, characterizing conserved pathways known to increase oxidative stress resistance could prove fruitful for crop improvement strategies. This report argues for the usefulness and practicality of the model organism Brachypodium distachyon for identifying and validating stress resistance factors. Specifically, we focus on a zinc deficiency B. distachyon basic leucine zipper transcription factor, BdbZIP10, and its role in oxidative stress in the model organism B. distachyon. When overexpressed, BdbZIP10 protects plants and callus tissue from oxidative stress insults, most likely through distinct and direct activation of protective oxidative stress genes. Increased oxidative stress resistance and cell viability through the overexpression of BdbZIP10 highlight the utility of investigating conserved stress responses between plant and animal systems.


Asunto(s)
Brachypodium/fisiología , Estrés Oxidativo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Brachypodium/metabolismo , Núcleo Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Estrés Oxidativo/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Factores de Transcripción/genética , Zinc/deficiencia , Zinc/metabolismo
10.
Dalton Trans ; 53(17): 7340-7349, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38602311

RESUMEN

The synthesis, thermolysis, and surface organometallic chemistry of thermolytic molecular precursors based on a new germanosilicate ligand platform, -OGe[OSi(OtBu)3]3, is described. Use of this ligand is demonstrated with preparation of complexes containing the first-row transition metals Cr, Mn, and Fe. The thermolysis and grafting behavior of the synthesized complexes, Fe{OGe[OSi(OtBu)3]3}2 (FeGe), Mn{OGe[OSi(OtBu)3]3}2(THF)2 (MnGe) and Cr{OGe[OSi(OtBu)3]3}2(THF)2 (CrGe), was evaluated using a combination of thermogravimetric analysis; nuclear magnetic resonance (NMR), ultraviolet-visible (UV-Vis), and electron paramagnetic resonance (EPR) spectroscopies; and single-crystal X-ray diffraction (XRD). Grafting of the precursors onto SBA-15 mesoporous silica and subsequent calcination in air led to substantial changes in transition metal coordination environments and oxidation states, the implications of which are discussed in the context of low-coordinate and low oxidation state thermolytic molecular precursors.

11.
Plants (Basel) ; 10(11)2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34834610

RESUMEN

Drought and heat are two major stresses predicted to increase in the future due to climate change. Plants exposed to multiple stressors elicit unique responses from those observed under individual stresses. A comparative transcriptome analysis of Lolium temulentum exposed to drought plus heat and non-stressed control plants revealed 20,221 unique up-regulated and 17,034 unique down-regulated differentially regulated transcripts. Gene ontology analysis revealed a strong emphasis on transcriptional regulation, protein folding, cell cycle/parts, organelles, binding, transport, signaling, oxidoreductase, and antioxidant activity. Differentially expressed genes (DEGs) encoding for transcriptional control proteins such as basic leucine zipper, APETALA2/Ethylene Responsive Factor, NAC, and WRKY transcription factors, and Zinc Finger (CCCH type and others) proteins were more often up-regulated, while DEGs encoding Basic Helix-Loop-Helix, MYB and GATA transcription factors, and C2H2 type Zinc Finger proteins were more often down-regulated. The DEGs encoding heat shock transcription factors were only up-regulated. Of the hormones, auxin-related DEGs were the most prevalent, encoding for auxin response factors, binding proteins, and efflux/influx carriers. Gibberellin-, cytokinin- and ABA-related DEGs were also prevalent, with fewer DEGs related to jasmonates and brassinosteroids. Knowledge of genes/pathways that grasses use to respond to the combination of heat/drought will be useful in developing multi-stress resistant grasses.

12.
Plants (Basel) ; 9(6)2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32580425

RESUMEN

For forage and turf grasses, wounding is a predominant stress that often results in extensive loss of vegetative tissues followed by rapid regrowth. Currently, little is known concerning the perception, signaling, or molecular responses associated with wound stress in forage- and turf-related grasses. A transcriptome analysis of Lolium temulentum plants subjected to severe wounding revealed 9413 upregulated and 7704 downregulated, distinct, differentially expressed genes (DEGs). Categories related to signaling, transcription, and response to stimuli were enriched in the upregulated DEGs. Specifically, sequences annotated as enzymes involved in hormone biosynthesis/action and cell wall modifications, mitogen-activated protein kinases, WRKY transcription factors, proteinase inhibitors, and pathogen defense-related DEGs were identified. Surprisingly, DEGs related to heat shock and chaperones were more prevalent in the downregulated DEGs when compared with the upregulated DEGs. This wound transcriptome analysis is the first step in identifying the molecular components and pathways used by grasses in response to wounding. The information gained from the analysis will provide a valuable molecular resource that will be used to develop approaches that can improve the recovery, regrowth, and long-term fitness of forage and turf grasses before/after cutting or grazing.

13.
BMC Res Notes ; 11(1): 79, 2018 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-29378628

RESUMEN

OBJECTIVE: Previously we have shown that mechanical wounding and volatiles released from cut grass, activated a 46 and 44 kDa mitogen-activated protein kinase (MAPK) in the model grass species Lolium temulentum (Lt). MAPKs play an important role as signal relays that connect incoming stress signals and stress responses. Since green leaf volatiles (GLV) are released during wounding, we wanted determine if specific compounds contained in the GLV mixture or if GLV generated from other plant species could activate these Lt MAPKs. RESULTS: Our analysis found that just a 1-min exposure to GLV was enough to activate the Lt 46 kDa MAPK within 3 min and the 44 kDa MAPK within 15 min. This activation pattern showed similar kinetics to those observed after wounding, and the GLV and wound activated bands associated with these MAPKs displayed identical migration on sodium dodecyl sulfate polyacrylamide gels. Thirteen different commercially available plant volatiles (alcohols, aldehydes and ketones) were tested and all thirteen volatile compounds were able to activate these same Lt MAPKs. Furthermore, GLV derived from three other grass species as well as tomato, a dicot, were also shown to activate these MAPKs in Lt.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos/metabolismo , Hojas de la Planta/metabolismo , Poaceae/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Electroforesis en Gel de Poliacrilamida , Activación Enzimática , Lolium/enzimología , Solanum lycopersicum/enzimología , Proteínas Quinasas Activadas por Mitógenos/química , Peso Molecular , Poaceae/clasificación , Especificidad de la Especie , Estrés Mecánico , Factores de Tiempo
14.
Plant Sci ; 171(4): 459-69, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25193643

RESUMEN

Soil salinity is one of the major abiotic stresses responsible for reduced persistence, yield and biomass accumulation in many crops including forage grass. Forage grass species are generally polymorphic, obligate out-crossers, that are self-incompatible. Because of their high genetic diversity, the mechanisms of salt tolerance are poorly understood. Consequently, the development of a useful model grass plant for the study of abiotic stresses is of great importance. We propose the use of Lolium temulentum L. (Darnel ryegrass), a diploid self-fertile species with a short life cycle (2-3 months), as a model system for the study of forage/turf grass species. To evaluate the utility of L. temulentum as a model grass species to study salt stress, a PCR-based subtractive suppression hybridization library was generated and sequenced. A total of 528 unique sequences were identified, among which 167 corresponded to orthologs of previously identified plant stress response genes. The expression patterns in leaf, crown and root tissues of selected genes were analyzed by Northern blot analysis, demonstrating salinity depended regulation of gene expression. These preliminary studies provide proof of concept supporting the use of L. temulentum as a model forage grass for molecular genetic analyses of salinity stress.

15.
Dalton Trans ; 45(27): 11025-34, 2016 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-27312519

RESUMEN

The molecular precursor tris[(tri-tert-butoxy)siloxy]gallium, as the tetrahydrofuran adduct Ga[OSi(O(t)Bu)3]3·THF (), was synthesized via the salt metathesis reaction of gallium trichloride with NaOSi(O(t)Bu)3. This complex serves as a model for isolated gallium in a silica framework. Complex decomposes thermally in hydrocarbon solvent, eliminating isobutylene, water, and tert-butanol to generate high surface area gallium-containing silica at low temperatures. When thermal decomposition was performed in the presence of P-123 Pluronic as a templating agent the generated material displayed uniform vermicular pores. Textural mesoporosity was evident in untemplated material. Co-thermolysis of with HOSi(O(t)Bu)3 in the presence of P-123 Pluronic led to materials with Ga : Si ratios ranging from 1 : 3 to 1 : 50, denoted UCB1-GaSi3, UCB1-GaSi10, UCB1-GaSi20 and UCB1-GaSi50. After calcination at 500 °C these materials exhibited decreasing surface areas and broadening pore distributions with increasing silicon content, indicating a loss of template effects. The position and dispersion of the gallium in UCB1-GaSi materials was investigated using (71)Ga MAS-NMR, powder XRD, and STEM/EDS elemental mapping. The results indicate a high degree of gallium dispersion in all samples, with gallium oxide clusters or oligomers present at higher gallium content.

16.
Dalton Trans ; 45(46): 18750-18751, 2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27834429

RESUMEN

Correction for 'Ga[OSi(OtBu)3]3·THF, a thermolytic molecular precursor for high surface area gallium-containing silica materials of controlled dispersion and stoichiometry' by James P. Dombrowski et al., Dalton Trans., 2016, 45, 11025-11034.

17.
Artículo en Inglés | MEDLINE | ID: mdl-28955460

RESUMEN

BACKGROUND: Claviceps purpurea is a pathogen that infects most members of Pooideae, a subfamily of Poaceae, and causes ergot, a floral disease in which the ovary is replaced with a sclerotium. When the ergot body is accidently consumed by either man or animal in high enough quantities, there is extreme pain, limb loss and sometimes death. RESULTS: This study was initiated to develop simple sequence repeat (SSRs) markers for rapid identification of C. purpurea. SSRs were designed from sequence data stored at the National Center for Biotechnology Information database. The study consisted of 74 ergot isolates, from four different host species, Lolium perenne, Poa pratensis, Bromus inermis, and Secale cereale plus three additional Claviceps species, C. pusilla, C. paspali and C.fusiformis. Samples were collected from six different counties in Oregon and Washington over a 5-year period. Thirty-four SSR markers were selected, which enabled the differentiation of each isolate from one another based solely on their molecular fingerprints. Discriminant analysis of principle components was used to identify four isolate groups, CA Group 1, 2, 3, and 4, for subsequent cluster and molecular variance analyses. CA Group 1 consisting of eight isolates from the host species P. pratensis, was separated on the cluster analysis plot from the remaining three groups and this group was later identified as C. humidiphila. The other three groups were distinct from one another, but closely related. These three groups contained samples from all four of the host species. These SSRs are simple to use, reliable and allowed clear differentiation of C. humidiphila from C. purpurea. Isolates from the three separate species, C. pusilla, C. paspali and C.fusiformis, also amplified with these markers. CONCLUSIONS: The SSR markers developed in this study will be helpful in defining the population structure and genetics of Claviceps strains. They will also provide valuable tools for plant breeders needing to identify resistance in crops or for researchers examining fungal movements across environments.

18.
BMC Res Notes ; 7: 807, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25403248

RESUMEN

BACKGROUND: Previously it has been shown that mechanical wounding, salinity and heat activated a 46 kDa and 44 kDa mitogen-activated protein kinases (MAPKs) in forage related grasses. Forage and turf related grasses are utilized in diverse environments where they are routinely subjected to herbicides and exposed to fire and volatiles after cutting, however very little is known concerning the perception or molecular responses to these different stresses or compounds. RESULTS: In the model grass species Lolium temulentum (Lt), a 46 kDa mitogen-activated protein kinase (MAPK) was activated in the leaves within 5 min and a 44 kDa MAPK 15 min after exposure to green leaf volatiles released from grass clippings. When the tips of leaves of Lt plants were scorched by fire, the 46 kDa MAPK and 44 kDa MAPK were rapidly activated within 5 min and 20 min respectively in the treated leaf, and 15 min systemically in an adjacent untreated tiller after exposure to fire. Nonanoic acid (pelargonic acid), a component in herbicides used on grasses, activated a 46 kDa MAPK in the treated leaves within 5 min of exposure and 15 min in systemic tissues. At concentrations normally used in the herbicides, nonanoic acid was found to only weakly activate the 44 kDa MAPK after an hour in treated leaves, but strongly activated it in the systemic tillers 30 min after treatment. Acetic acid, HCl and NaOH also were found to activate these MAPKs in treated tillers. CONCLUSION: The rapid activation of these MAPKs to a wide range of stress stimuli, suggest that these MAPKs play a role in the perception and response to these stresses and compounds. The activation of the MAPK by green leaf volatiles indicates a role for these compounds in wound signaling in grasses.


Asunto(s)
Ácidos Grasos/farmacología , Incendios , Lolium/enzimología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Hojas de la Planta/química , Compuestos Orgánicos Volátiles/farmacología , Activación Enzimática/efectos de los fármacos , Herbicidas/toxicidad , Lolium/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos
19.
Surgery ; 156(4): 894-9, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25239341

RESUMEN

BACKGROUND: Incisional hernia recurrence after repair continues to be a persistent complication. The purpose of this study was to investigate the association between patient-specific factors, surgeon-specific factors, and hernia recurrence in patients undergoing repair of an incisional hernia in whom the component separation technique was used. METHODS: All patients undergoing incisional herniorrhaphy with component separation from October 2006 to May 2013 were reviewed. Data collected included demographics, comorbidities, postoperative complications, and factors related to mesh implantation. Computed tomography images were used to evaluate the size of the hernia and dimensions of the linea alba. RESULTS: The 85 patients were followed for a mean of 14.4 months, and 12 (14.1%) recurrent hernias were diagnosed. More than 91% of the herniorrhaphies were performed after a previous repair failed. The recurrence rate decreased to 11.1% when, in addition to the component separation, a mesh was used to reinforce the repair. There were no differences between the group who developed a recurrence and those who did not in terms of sex, age, race, body mass index, preoperative comorbidities, or type of mesh used. CONCLUSION: In this case series of complex abdominal wall herniorrhaphies using component separation, the recurrence rate was 14.1% overall and 11.1% when a mesh was used to reinforce the repair. Recurrent hernia was not associated with patient demographics, comorbidities, thickness or width of the linea alba, presence of a contaminated wound, or postoperative surgical-site occurrences.


Asunto(s)
Pared Abdominal/cirugía , Hernia Ventral/cirugía , Herniorrafia/métodos , Mallas Quirúrgicas , Adulto , Anciano , Femenino , Estudios de Seguimiento , Herniorrafia/instrumentación , Humanos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Recurrencia , Estudios Retrospectivos , Método Simple Ciego , Resultado del Tratamiento
20.
Front Plant Sci ; 5: 550, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25360141

RESUMEN

Methanol is a byproduct of cell wall modification, released through the action of pectin methylesterases (PMEs), which demethylesterify cell wall pectins. Plant PMEs play not only a role in developmental processes but also in responses to herbivory and infection by fungal or bacterial pathogens. Molecular mechanisms that explain how methanol affects plant defenses are poorly understood. Here we show that exogenously supplied methanol alone has weak effects on defense signaling in three dicot species, however, it profoundly alters signaling responses to danger- and microbe-associated molecular patterns (DAMPs, MAMPs) such as the alarm hormone systemin, the bacterial flagellum-derived flg22 peptide, and the fungal cell wall-derived oligosaccharide chitosan. In the presence of methanol the kinetics and amplitudes of DAMP/MAMP-induced MAP kinase (MAPK) activity and oxidative burst are altered in tobacco and tomato suspension-cultured cells, in Arabidopsis seedlings and tomato leaf tissue. As a possible consequence of altered DAMP/MAMP signaling, methanol suppressed the expression of the defense genes PR-1 and PI-1 in tomato. In cell cultures of the grass tall fescue (Festuca arundinacea, Poaceae, Monocots), methanol alone activates MAPKs and increases chitosan-induced MAPK activity, and in the darnel grass Lolium temulentum (Poaceae), it alters wound-induced MAPK signaling. We propose that methanol can be recognized by plants as a sign of the damaged self. In dicots, methanol functions as a DAMP-like alarm signal with little elicitor activity on its own, whereas it appears to function as an elicitor-active DAMP in monocot grasses. Ethanol had been implicated in plant stress responses, although the source of ethanol in plants is not well established. We found that it has a similar effect as methanol on responses to MAMPs and DAMPs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA