Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Alzheimers Dement ; 18(8): 1498-1510, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34812584

RESUMEN

INTRODUCTION: Intellectual disability, accelerated aging, and early-onset Alzheimer-like neurodegeneration are key brain pathological features of Down syndrome (DS). Although growing research aims at the identification of molecular pathways underlying the aging trajectory of DS population, data on infants and adolescents with DS are missing. METHODS: Neuronal-derived extracellular vesicles (nEVs) were isolated form healthy donors (HDs, n = 17) and DS children (n = 18) from 2 to 17 years of age and nEV content was interrogated for markers of insulin/mTOR pathways. RESULTS: nEVs isolated from DS children were characterized by a significant increase in pIRS1Ser636 , a marker of insulin resistance, and the hyperactivation of the Akt/mTOR/p70S6K axis downstream from IRS1, likely driven by the higher inhibition of Phosphatase and tensin homolog (PTEN). High levels of pGSK3ßSer9 were also found. CONCLUSIONS: The alteration of the insulin-signaling/mTOR pathways represents an early event in DS brain and likely contributes to the cerebral dysfunction and intellectual disability observed in this unique population.


Asunto(s)
Enfermedad de Alzheimer , Síndrome de Down , Vesículas Extracelulares , Discapacidad Intelectual , Adolescente , Enfermedad de Alzheimer/patología , Niño , Síndrome de Down/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Lactante , Insulina , Serina-Treonina Quinasas TOR/metabolismo
2.
Antioxidants (Basel) ; 9(8)2020 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-32727065

RESUMEN

Biliverdin reductase-A (BVR-A) impairment is associated with increased accumulation of oxidatively-damaged proteins along with the impairment of autophagy in the brain during neurodegenerative disorders. Reduced autophagy inhibits the clearance of misfolded proteins, which then form neurotoxic aggregates promoting neuronal death. The aim of our study was to clarify the role for BVR-A in the regulation of the mTOR/autophagy axis by evaluating age-associated changes (2, 6 and 11 months) in cerebral cortex samples collected from BVR-A knock-out (BVR-A-/-) and wild-type (WT) mice. Our results show that BVR-A deficiency leads to the accumulation of oxidatively-damaged proteins along with mTOR hyper-activation in the cortex. This process starts in juvenile mice and persists with aging. mTOR hyper-activation is associated with the impairment of autophagy as highlighted by reduced levels of Beclin-1, LC3, LC3II/I ratio, Atg5-Atg12 complex and Atg7 in the cortex of BVR-A-/- mice. Furthermore, we have identified the dysregulation of AMP-activated protein kinase (AMPK) as a critical event driving mTOR hyper-activation in the absence of BVR-A. Overall, our results suggest that BVR-A is a new player in the regulation of autophagy, which may be targeted to arrive at novel therapeutics for diseases involving impaired autophagy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA