Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 631(8019): 98-105, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38867037

RESUMEN

A key challenge in aerosol pollution studies and climate change assessment is to understand how atmospheric aerosol particles are initially formed1,2. Although new particle formation (NPF) mechanisms have been described at specific sites3-6, in most regions, such mechanisms remain uncertain to a large extent because of the limited ability of atmospheric models to simulate critical NPF processes1,7. Here we synthesize molecular-level experiments to develop comprehensive representations of 11 NPF mechanisms and the complex chemical transformation of precursor gases in a fully coupled global climate model. Combined simulations and observations show that the dominant NPF mechanisms are distinct worldwide and vary with region and altitude. Previously neglected or underrepresented mechanisms involving organics, amines, iodine oxoacids and HNO3 probably dominate NPF in most regions with high concentrations of aerosols or large aerosol radiative forcing; such regions include oceanic and human-polluted continental boundary layers, as well as the upper troposphere over rainforests and Asian monsoon regions. These underrepresented mechanisms also play notable roles in other areas, such as the upper troposphere of the Pacific and Atlantic oceans. Accordingly, NPF accounts for different fractions (10-80%) of the nuclei on which cloud forms at 0.5% supersaturation over various regions in the lower troposphere. The comprehensive simulation of global NPF mechanisms can help improve estimation and source attribution of the climate effects of aerosols.

2.
Environ Sci Technol ; 58(19): 8380-8392, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38691504

RESUMEN

A comprehensive understanding of the full volatility spectrum of organic oxidation products from the benzene series precursors is important to quantify the air quality and climate effects of secondary organic aerosol (SOA) and new particle formation (NPF). However, current models fail to capture the full volatility spectrum due to the absence of important reaction pathways. Here, we develop a novel unified model framework, the integrated two-dimensional volatility basis set (I2D-VBS), to simulate the full volatility spectrum of products from benzene series precursors by simultaneously representing first-generational oxidation, multigenerational aging, autoxidation, dimerization, nitrate formation, etc. The model successfully reproduces the volatility and O/C distributions of oxygenated organic molecules (OOMs) as well as the concentrations and the O/C of SOA over wide-ranging experimental conditions. In typical urban environments, autoxidation and multigenerational oxidation are the two main pathways for the formation of OOMs and SOA with similar contributions, but autoxidation contributes more to low-volatility products. NOx can reduce about two-thirds of OOMs and SOA, and most of the extremely low-volatility products compared to clean conditions, by suppressing dimerization and autoxidation. The I2D-VBS facilitates a holistic understanding of full volatility product formation, which helps fill the large gap in the predictions of organic NPF, particle growth, and SOA formation.


Asunto(s)
Benceno , Benceno/química , Compuestos Orgánicos/química , Oxidación-Reducción , Aerosoles , Volatilización , Contaminantes Atmosféricos , Modelos Teóricos
3.
Environ Sci Technol ; 57(48): 20034-20042, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37931038

RESUMEN

Asphalt is ubiquitous across cities and a source of organic compounds spanning a wide range of volatility and may be an overlooked source of urban organic aerosols. The emission rate and composition depend strongly on temperature, but emissions have been observed at both application temperatures and surface temperatures during warm sunny days. Here we report primary organic aerosol (POA) emissions and secondary organic aerosol (SOA) production from asphalt. We reheated real-world asphalt samples to application-relevant temperatures (∼130 °C) and typical summertime road-surface temperatures (∼55 °C) and then flushed the emitted vapors into an environmental oxidation chamber containing ammonium sulfate seed particles. SOA was then formed following the photo-oxidation of emissions under high-NOx conditions typical of urban atmospheres. We find that POA only forms at application temperature as it does not require further oxidation, whereas SOA forms under both conditions; with the resulting POA and SOA both being semi-volatile. While total OA formation rates were substantially greater under the limited time spent under application conditions, SOA formation from passive asphalt heating presents a potential long-term source, as heating continues for the lifetime of the road surface. This suggests that persistent asphalt solar heating is likely a considerable and continued source of summertime SOA in urban environments.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Atmosféricos/análisis , Compuestos Orgánicos/análisis , Hidrocarburos , Aerosoles/análisis
4.
J Phys Chem A ; 127(41): 8530-8543, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37792960

RESUMEN

The pressure dependence of carbonyl oxide (Criegee intermediate) stabilization can be measured via H2SO4 detection using chemical ionization mass spectrometry. By selectively scavenging OH radicals in a flow reactor containing an alkene, O3, and SO2, we measure an H2SO4 ratio related to the Criegee intermediate stabilization, and by performing experiments at multiple pressures, we constrain the pressure dependence of the stabilization. Here, we present results from a set of monoterpenes as well as isoprene, along with previously published results from tetramethylethylene and a sequence of symmetrical trans alkenes. We are able to reproduce the observations with a physically sensible set of parameters related to standard pressure falloff functions, providing both a consistent picture of the reaction dynamics and a method to describe the pressure stabilization following ozonolysis of all alkenes under a wide range of atmospheric conditions.

5.
Proc Natl Acad Sci U S A ; 117(41): 25344-25351, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32989149

RESUMEN

The large concentrations of ultrafine particles consistently observed at high altitudes over the tropics represent one of the world's largest aerosol reservoirs, which may be providing a globally important source of cloud condensation nuclei. However, the sources and chemical processes contributing to the formation of these particles remain unclear. Here we investigate new particle formation (NPF) mechanisms in the Amazon free troposphere by integrating insights from laboratory measurements, chemical transport modeling, and field measurements. To account for organic NPF, we develop a comprehensive model representation of the temperature-dependent formation chemistry and thermodynamics of extremely low volatility organic compounds as well as their roles in NPF processes. We find that pure-organic NPF driven by natural biogenic emissions dominates in the uppermost troposphere above 13 km and accounts for 65 to 83% of the column total NPF rate under relatively pristine conditions, while ternary NPF involving organics and sulfuric acid dominates between 8 and 13 km. The large organic NPF rates at high altitudes mainly result from decreased volatility of organics and increased NPF efficiency at low temperatures, somewhat counterbalanced by a reduced chemical formation rate of extremely low volatility organic compounds. These findings imply a key role of naturally occurring organic NPF in high-altitude preindustrial environments and will help better quantify anthropogenic aerosol forcing from preindustrial times to the present day.

6.
Environ Sci Technol ; 56(22): 15328-15336, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36215417

RESUMEN

Secondary organic aerosol (SOA) is a significant component of atmospheric fine particulate matter. Mobile sources have historically been a major source of SOA precursors in urban environments, but decades of regulations have reduced their emissions. Less regulated sources, such as volatile chemical products (VCPs), are of growing importance. We analyzed ambient and emissions data to assess the contribution of mobile sources to SOA formation in Los Angeles during the period of 2009-2019. During this period, air quality in the Los Angeles region has improved, but organic aerosol (OA) concentrations did not decrease as much as primary pollutants. This appears to be largely due to SOA, whose mass fraction in OA increased over this period. In 2010, about half of the freshly formed SOA measured in Pasadena, CA appears to be formed from hydrocarbon (non-oxygenated) precursors. Chemical mass balance analysis indicates that these hydrocarbon SOA precursors (including intermediate volatility organic compounds) can largely be explained by emissions from mobile sources in 2010. Our analysis indicates that continued reduction in emissions from mobile sources should lead to additional significant decreases in atmospheric SOA and PM2.5 mass in the Los Angeles region.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Los Angeles , Aerosoles/química , Contaminación del Aire/análisis , Emisiones de Vehículos/análisis , Monitoreo del Ambiente
7.
Environ Sci Technol ; 56(8): 4806-4815, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35394777

RESUMEN

Volatile chemical products (VCPs) have recently been identified as potentially important unconventional sources of secondary organic aerosol (SOA), in part due to the mitigation of conventional emissions such as vehicle exhaust. Here, we report measurements of SOA production in an oxidation flow reactor from a series of common VCPs containing oxygenated functional groups and at least one oxygen within the molecular backbone. These include two oxygenated aromatic species (phenoxyethanol and 1-phenoxy-2-propanol), two esters (butyl butyrate and butyl acetate), and four glycol ethers (carbitol, methyl carbitol, butyl carbitol, and hexyl carbitol). We measured gas- and particle-phase products with a suite of mass spectrometers and particle-sizing instruments. Only the aromatic VCPs produce SOA with substantial yields. For the acyclic VCPs, ether and ester functionality promotes fragmentation and hinders autoxidation, whereas aromatic rings drive SOA formation in spite of the presence of ether groups. Therefore, our results suggest that a potential strategy to reduce urban SOA from VCPs would be to reformulate consumer products to include less oxygenated aromatic compounds.


Asunto(s)
Contaminantes Atmosféricos , Aerosoles/química , Contaminantes Atmosféricos/análisis , Éter , Compuestos Orgánicos/química , Emisiones de Vehículos/análisis
8.
Environ Sci Technol ; 56(2): 770-778, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34806377

RESUMEN

The understanding at a molecular level of ambient secondary organic aerosol (SOA) formation is hampered by poorly constrained formation mechanisms and insufficient analytical methods. Especially in developing countries, SOA related haze is a great concern due to its significant effects on climate and human health. We present simultaneous measurements of gas-phase volatile organic compounds (VOCs), oxygenated organic molecules (OOMs), and particle-phase SOA in Beijing. We show that condensation of the measured OOMs explains 26-39% of the organic aerosol mass growth, with the contribution of OOMs to SOA enhanced during severe haze episodes. Our novel results provide a quantitative molecular connection from anthropogenic emissions to condensable organic oxidation product vapors, their concentration in particle-phase SOA, and ultimately to haze formation.


Asunto(s)
Contaminantes Atmosféricos , Compuestos Orgánicos Volátiles , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Beijing , Humanos
9.
J Phys Chem A ; 126(40): 7361-7372, 2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36194388

RESUMEN

Reactive oxygen species (ROS) and environmentally persistent free radicals (EPFR) play an important role in chemical transformation of atmospheric aerosols and adverse aerosol health effects. This study investigated the effects of nitrogen oxides (NOx) during photooxidation of α-pinene and naphthalene on the EPFR content and ROS formation from secondary organic aerosols (SOA). Electron paramagnetic resonance (EPR) spectroscopy was applied to quantify EPFR content and ROS formation. While no EPFR were detected in α-pinene SOA, we found that naphthalene SOA contained about 0.7 pmol µg-1 of EPFR, and NOx has little influence on EPFR concentrations and oxidative potential. α-Pinene and naphthalene SOA generated under low NOx conditions form OH radicals and superoxide in the aqueous phase, which was lowered substantially by 50-80% for SOA generated under high NOx conditions. High-resolution mass spectrometry analysis showed the substantial formation of nitroaromatics and organic nitrates in a high NOx environment. The modeling results using the GECKO-A model that simulates explicit gas-phase chemistry and the radical 2D-VBS model that treats autoxidation predicted reduced formation of hydroperoxides and enhanced formation of organic nitrates under high NOx due to the reactions of peroxy radicals with NOx instead of their reactions with HO2. Consistently, the presence of NOx resulted in the decrease of peroxide contents and oxidative potential of α-pinene SOA.


Asunto(s)
Contaminantes Atmosféricos , Aerosoles/química , Contaminantes Atmosféricos/química , Monoterpenos Bicíclicos , Naftalenos , Óxidos de Nitrógeno , Especies Reactivas de Oxígeno , Superóxidos
10.
Environ Res ; 212(Pt C): 113388, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35569537

RESUMEN

As an important central city in western China, Xi'an has the worst atmospheric pollution record in China and many measures have been taken to improve the air quality in the past few years. In this study, PM2.5 samples were collected across four seasons from 2017 to 2018 in Xi'an. Organic carbon and elemental carbon, water soluble ions, and elements were monitored to assess the air quality. The average annual PM2.5 concentration was (134.9 ± 48.1 µg/m3), with the highest concentration in winter (188.8 ± 93.2 µg/m3), and lowest concentration in summer (71.2 ± 12.1 µg/m3). The secondary generation of sulfate (SO42-) and nitrate (NO3-) was strong in spring, and secondary organic carbon (SOC) was formed in all seasons. The compositions of PM2.5 changed greatly during a sandstorm occurred and the Spring Festival. The sandstorm played a positive role in removing local pollutant NO3-, but also increased the concentration of SO42-, however both the concentration of SO42- and NO3- greatly increased by secondary generation during Spring Festival. Potential source analysis showed that during the sandstorm, pollutants were transported over a long distance from the northwest of China, whereas it was mainly from the local and surrounded emissions during the Spring Festival. Except Ca2+ and geological dust (GM), the other components in PM2.5 increased significantly on the day of the Spring Festival. During sampling time in Xi'an, the positive matrix factorization (PMF) model analysis showed that PM2.5 mainly came from vehicle emission, coal combustion, and biomass burning.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Carbono/análisis , China , Monitoreo del Ambiente , Nitratos/análisis , Material Particulado/análisis , Estaciones del Año , Emisiones de Vehículos/análisis
11.
Chem Rev ; 119(6): 3472-3509, 2019 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-30799608

RESUMEN

Highly oxygenated organic molecules (HOM) are formed in the atmosphere via autoxidation involving peroxy radicals arising from volatile organic compounds (VOC). HOM condense on pre-existing particles and can be involved in new particle formation. HOM thus contribute to the formation of secondary organic aerosol (SOA), a significant and ubiquitous component of atmospheric aerosol known to affect the Earth's radiation balance. HOM were discovered only very recently, but the interest in these compounds has grown rapidly. In this Review, we define HOM and describe the currently available techniques for their identification/quantification, followed by a summary of the current knowledge on their formation mechanisms and physicochemical properties. A main aim is to provide a common frame for the currently quite fragmented literature on HOM studies. Finally, we highlight the existing gaps in our understanding and suggest directions for future HOM research.


Asunto(s)
Oxígeno/química , Peróxidos/química , Compuestos Orgánicos Volátiles/química , Aerosoles , Atmósfera/química , Oxidación-Reducción
12.
Environ Sci Technol ; 55(8): 4357-4367, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33705653

RESUMEN

A major challenge in assessing the impact of aerosols on climate change is to understand how human activities change aerosol loading and properties relative to the pristine/preindustrial baseline. Here, we combine chemical transport simulations and field measurements to investigate the effect of anthropogenic pollution from an isolated metropolis on the particle number concentration over the preindustrial-like Amazon rainforest through various new-particle formation (NPF) mechanisms and primary particle emissions. To represent organic-mediated NPF, we employ a state-of-the-art model that systematically simulates the formation chemistry and thermodynamics of extremely low volatility organic compounds, as well as their roles in NPF processes, and further update the model to improve organic NPF simulations under human-influenced conditions. Results show that urban pollution from the metropolis increases the particle number concentration by a factor of 5-25 over the downwind region (within 200 km from the city center) compared to background conditions. Our model indicates that NPF contributes over 70% of the total particle number in the downwind region except immediately adjacent to the sources. Among different NPF mechanisms, the ternary NPF involving organics and sulfuric acid overwhelmingly dominates. The improved understanding of particle formation mechanisms will help better quantify anthropogenic aerosol forcing from preindustrial times to the present day.


Asunto(s)
Contaminantes Atmosféricos , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Ciudades , Contaminación Ambiental , Humanos , Bosque Lluvioso
13.
Environ Sci Technol ; 55(20): 13646-13656, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34585932

RESUMEN

Gas-phase oxygenated organic molecules (OOMs) can contribute substantially to the growth of newly formed particles. However, the characteristics of OOMs and their contributions to particle growth rate are not well understood in urban areas, which have complex anthropogenic emissions and atmospheric conditions. We performed long-term measurement of gas-phase OOMs in urban Beijing during 2018-2019 using nitrate-based chemical ionization mass spectrometry. OOM concentrations showed clear seasonal variations, with the highest in the summer and the lowest in the winter. Correspondingly, calculated particle growth rates due to OOM condensation were highest in summer, followed by spring, autumn, and winter. One prominent feature of OOMs in this urban environment was a high fraction (∼75%) of nitrogen-containing OOMs. These nitrogen-containing OOMs contributed only 50-60% of the total growth rate led by OOM condensation, owing to their slightly higher volatility than non-nitrate OOMs. By comparing the calculated condensation growth rates and the observed particle growth rates, we showed that sulfuric acid and its clusters are the main contributors to the growth of sub-3 nm particles, with OOMs significantly promoting the growth of 3-25 nm particles. In wintertime Beijing, however, there are missing contributors to the growth of particles above 3 nm, which remain to be further investigated.


Asunto(s)
Contaminantes Atmosféricos , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Compuestos Orgánicos/análisis , Tamaño de la Partícula , Material Particulado/análisis , Estaciones del Año
14.
Environ Sci Technol ; 54(13): 7911-7921, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32515954

RESUMEN

To better understand the role of aromatic hydrocarbons in new-particle formation, we measured the particle-phase abundance and volatility of oxidation products following the reaction of aromatic hydrocarbons with OH radicals. For this we used thermal desorption in an iodide-adduct Time-of-Flight Chemical-Ionization Mass Spectrometer equipped with a Filter Inlet for Gases and AEROsols (FIGAERO-ToF-CIMS). The particle-phase volatility measurements confirm that oxidation products of toluene and naphthalene can contribute to the initial growth of newly formed particles. Toluene-derived (C7) oxidation products have a similar volatility distribution to that of α-pinene-derived (C10) oxidation products, while naphthalene-derived (C10) oxidation products are much less volatile than those from toluene or α-pinene; they are thus stronger contributors to growth. Rapid progression through multiple generations of oxidation is more pronounced in toluene and naphthalene than in α-pinene, resulting in more oxidation but also favoring functional groups with much lower volatility per added oxygen atom, such as hydroxyl and carboxylic groups instead of hydroperoxide groups. Under conditions typical of polluted urban settings, naphthalene may well contribute to nucleation and the growth of the smallest particles, whereas the more abundant alkyl benzenes may overtake naphthalene once the particles have grown beyond the point where the Kelvin effect strongly influences the condensation driving force.


Asunto(s)
Hidrocarburos Aromáticos , Compuestos Orgánicos Volátiles , Aerosoles , Gases , Volatilización
15.
Proc Natl Acad Sci U S A ; 114(27): 6984-6989, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28630318

RESUMEN

On-road gasoline vehicles are a major source of secondary organic aerosol (SOA) in urban areas. We investigated SOA formation by oxidizing dilute, ambient-level exhaust concentrations from a fleet of on-road gasoline vehicles in a smog chamber. We measured less SOA formation from newer vehicles meeting more stringent emissions standards. This suggests that the natural replacement of older vehicles with newer ones that meet more stringent emissions standards should reduce SOA levels in urban environments. However, SOA production depends on both precursor concentrations (emissions) and atmospheric chemistry (SOA yields). We found a strongly nonlinear relationship between SOA formation and the ratio of nonmethane organic gas to oxides of nitrogen (NOx) (NMOG:NOx), which affects the fate of peroxy radicals. For example, changing the NMOG:NOx from 4 to 10 ppbC/ppbNOx increased the SOA yield from dilute gasoline vehicle exhaust by a factor of 8. We investigated the implications of this relationship for the Los Angeles area. Although organic gas emissions from gasoline vehicles in Los Angeles are expected to fall by almost 80% over the next two decades, we predict no reduction in SOA production from these emissions due to the effects of rising NMOG:NOx on SOA yields. This highlights the importance of integrated emission control policies for NOx and organic gases.

16.
Environ Sci Technol ; 53(21): 12357-12365, 2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-31553886

RESUMEN

We use a real-time temperature-programmed desorption chemical-ionization mass spectrometer (FIGAERO-CIMS) to measure particle-phase composition and volatility of nucleated particles, studying pure α-pinene oxidation over a wide temperature range (-50 °C to +25 °C) in the CLOUD chamber at CERN. Highly oxygenated organic molecules are much more abundant in particles formed at higher temperatures, shifting the compounds toward higher O/C and lower intrinsic (300 K) volatility. We find that pure biogenic nucleation and growth depends only weakly on temperature. This is because the positive temperature dependence of degree of oxidation (and polarity) and the negative temperature dependence of volatility counteract each other. Unlike prior work that relied on estimated volatility, we directly measure volatility via calibrated temperature-programmed desorption. Our particle-phase measurements are consistent with gas-phase results and indicate that during new-particle formation from α-pinene oxidation, gas-phase chemistry directly determines the properties of materials in the condensed phase. We now have consistency between measured gas-phase product concentrations, product volatility, measured and modeled growth rates, and the particle composition over most temperatures found in the troposphere.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Aerosoles , Monoterpenos Bicíclicos , Monoterpenos , Volatilización
17.
J Phys Chem A ; 123(17): 3887-3892, 2019 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-30950612

RESUMEN

Atmospheric organic aerosols comprise complex mixtures of a myriad of compounds with a wide range of structures and volatilities. To understand the fate of atmospheric organic aerosols and their contribution to particulate matter pollution, we need to study the relative portion divided between semivolatile organic compounds (SVOCs) and low-volatility organic compounds (LVOCs). SVOCs can effectively migrate and exchange between aerosol populations and thus are more accessible for further reactions and removal processes, while LVOCs will essentially stay in the particle phase. Here, we introduce using ionic liquid droplets as novel sorbents for organic vapors in smog chamber experiments to study the transfer of constituents between aerosol populations and to separate SVOCs and LVOCs from chamber-produced secondary organic aerosols (SOAs). SOA was formed and condensed on the ammonium-sulfate seeds, and later ionic liquid droplets were introduced into the chamber. We show that there are considerable yields of both LVOCs and SVOCs produced from α-pinene ozonolysis, and the uptake of SVOCs into the ionic liquid increases as the amount of reacted α-pinene increases. We also show that the SVOCs absorbed into the ionic liquid re-evaporate more readily compared to SOA originally condensed on the ammonium-sulfate seeds. We are thus able to differentiate the semivolatile components that partition into the extremely polar ionic liquid aerosols from the demonstrably less volatile components also condensed on the ammonium-sulfate seeds. Combined with previous studies using other organic aerosols as solvents to probe SVOC transfer between aerosol populations, we provide a wide set of measurements to probe and constrain the physical and thermodynamic properties of chamber-produced SOA complex.

18.
Nature ; 502(7471): 359-63, 2013 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-24097350

RESUMEN

Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei. Aerosols can cause a net cooling of climate by scattering sunlight and by leading to smaller but more numerous cloud droplets, which makes clouds brighter and extends their lifetimes. Atmospheric aerosols derived from human activities are thought to have compensated for a large fraction of the warming caused by greenhouse gases. However, despite its importance for climate, atmospheric nucleation is poorly understood. Recently, it has been shown that sulphuric acid and ammonia cannot explain particle formation rates observed in the lower atmosphere. It is thought that amines may enhance nucleation, but until now there has been no direct evidence for amine ternary nucleation under atmospheric conditions. Here we use the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN and find that dimethylamine above three parts per trillion by volume can enhance particle formation rates more than 1,000-fold compared with ammonia, sufficient to account for the particle formation rates observed in the atmosphere. Molecular analysis of the clusters reveals that the faster nucleation is explained by a base-stabilization mechanism involving acid-amine pairs, which strongly decrease evaporation. The ion-induced contribution is generally small, reflecting the high stability of sulphuric acid-dimethylamine clusters and indicating that galactic cosmic rays exert only a small influence on their formation, except at low overall formation rates. Our experimental measurements are well reproduced by a dynamical model based on quantum chemical calculations of binding energies of molecular clusters, without any fitted parameters. These results show that, in regions of the atmosphere near amine sources, both amines and sulphur dioxide should be considered when assessing the impact of anthropogenic activities on particle formation.


Asunto(s)
Aminas/química , Atmósfera/química , Material Particulado/química , Ácidos Sulfúricos/química , Radiación Cósmica , Dimetilaminas/química , Efecto Invernadero , Actividades Humanas , Modelos Químicos , Teoría Cuántica , Dióxido de Azufre/química
19.
Proc Natl Acad Sci U S A ; 113(45): 12649-12654, 2016 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-27791066

RESUMEN

Atmospheric aerosols exert a substantial influence on climate, ecosystems, visibility, and human health. Although secondary organic aerosols (SOA) dominate fine-particle mass, they comprise myriad compounds with uncertain sources, chemistry, and interactions. SOA formation involves absorption of vapors into particles, either because gas-phase chemistry produces low-volatility or semivolatile products that partition into particles or because more-volatile organics enter particles and react to form lower-volatility products. Thus, SOA formation involves both production of low-volatility compounds and their diffusion into particles. Most chemical transport models assume a single well-mixed phase of condensing organics and an instantaneous equilibrium between bulk gas and particle phases; however, direct observations constraining diffusion of semivolatile organics into particles containing SOA are scarce. Here we perform unique mixing experiments between SOA populations including semivolatile constituents using quantitative, single-particle mass spectrometry to probe any mass-transfer limitations in particles containing SOA. We show that, for several hours, particles containing SOA from toluene oxidation resist exchange of semivolatile constituents at low relative humidity (RH) but start to lose that resistance above 20% RH. Above 40% RH, the exchange of material remains constant up to 90% RH. We also show that dry particles containing SOA from α-pinene ozonolysis do not appear to resist exchange of semivolatile compounds. Our interpretation is that in-particle diffusion is not rate-limiting to mass transfer in these systems above 40% RH. To the extent that these systems are representative of ambient SOA, we conclude that diffusion limitations are likely not common under typical ambient boundary layer conditions.

20.
Environ Sci Technol ; 52(12): 6807-6815, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29775536

RESUMEN

Characterizing intracity variations of atmospheric particulate matter has mostly relied on fixed-site monitoring and quantifying variability in terms of different bulk aerosol species. In this study, we performed ground-based mobile measurements using a single-particle mass spectrometer to study spatial patterns of source-specific particles and the evolution of particle mixing state in 21 areas in the metropolitan area of Pittsburgh, PA. We selected sampling areas based on traffic density and restaurant density with each area ranging from 0.2 to 2 km2. Organics dominate particle composition in all of the areas we sampled while the sources of organics differ. The contribution of particles from traffic and restaurant cooking varies greatly on the neighborhood scale. We also investigate how primary and aged components in particles mix across the urban scale. Lastly we quantify and map the particle mixing state for all areas we sampled and discuss the overall pattern of mixing state evolution and its implications. We find that in the upwind and downwind of the urban areas, particles are more internally mixed while in the city center, particle mixing state shows large spatial heterogeneity that is mostly driven by emissions. This study is to our knowledge, the first study to perform fine spatial scale mapping of particle mixing state using ground-based mobile measurement and single-particle mass spectrometry.


Asunto(s)
Contaminantes Atmosféricos , Aerosoles , Ciudades , Monitoreo del Ambiente , Tamaño de la Partícula , Material Particulado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA