Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 617(7959): 185-193, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37100902

RESUMEN

The outer membrane structure is common in Gram-negative bacteria, mitochondria and chloroplasts, and contains outer membrane ß-barrel proteins (OMPs) that are essential interchange portals of materials1-3. All known OMPs share the antiparallel ß-strand topology4, implicating a common evolutionary origin and conserved folding mechanism. Models have been proposed for bacterial ß-barrel assembly machinery (BAM) to initiate OMP folding5,6; however, mechanisms by which BAM proceeds to complete OMP assembly remain unclear. Here we report intermediate structures of BAM assembling an OMP substrate, EspP, demonstrating sequential conformational dynamics of BAM during the late stages of OMP assembly, which is further supported by molecular dynamics simulations. Mutagenic in vitro and in vivo assembly assays reveal functional residues of BamA and EspP for barrel hybridization, closure and release. Our work provides novel insights into the common mechanism of OMP assembly.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa , Proteínas de Escherichia coli , Escherichia coli , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Simulación de Dinámica Molecular , Pliegue de Proteína , Especificidad por Sustrato
2.
PLoS Biol ; 22(5): e3002628, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38814940

RESUMEN

The peptidoglycan (PG) layer is a critical component of the bacterial cell wall and serves as an important target for antibiotics in both gram-negative and gram-positive bacteria. The hydrolysis of septal PG (sPG) is a crucial step of bacterial cell division, facilitated by FtsEX through an amidase activation system. In this study, we present the cryo-EM structures of Escherichia coli FtsEX and FtsEX-EnvC in the ATP-bound state at resolutions of 3.05 Å and 3.11 Å, respectively. Our PG degradation assays in E. coli reveal that the ATP-bound conformation of FtsEX activates sPG hydrolysis of EnvC-AmiB, whereas EnvC-AmiB alone exhibits autoinhibition. Structural analyses indicate that ATP binding induces conformational changes in FtsEX-EnvC, leading to significant differences from the apo state. Furthermore, PG degradation assays of AmiB mutants confirm that the regulation of AmiB by FtsEX-EnvC is achieved through the interaction between EnvC-AmiB. These findings not only provide structural insight into the mechanism of sPG hydrolysis and bacterial cell division, but also have implications for the development of novel therapeutics targeting drug-resistant bacteria.


Asunto(s)
Adenosina Trifosfato , División Celular , Proteínas de Escherichia coli , Escherichia coli , Peptidoglicano , Peptidoglicano/metabolismo , Hidrólisis , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Escherichia coli/genética , Adenosina Trifosfato/metabolismo , Microscopía por Crioelectrón , Pared Celular/metabolismo , Conformación Proteica , Modelos Moleculares , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/genética , Proteínas de la Membrana Bacteriana Externa , Transportadoras de Casetes de Unión a ATP , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Lipoproteínas , Proteínas de Ciclo Celular
3.
BMC Nephrol ; 24(1): 51, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36899322

RESUMEN

BACKGROUND: Bevacizumab is a monoclonal antibody drug targeting Vascular Endothelial Growth Factor (VEGF), which binds to VEGF receptors to inhibit vascular endothelial cell proliferation and angiogenesis, thus inhibiting tumorigenesis. Pembrolizumab is a monoclonal antibody that can bind to the programmed death-1 (PD-1) receptor, which can block the binding of the PD-1 receptor to its ligands PD-L1 and PD-L2, and release PD-1 pathway-mediated suppression of immune responses. By blocking the activity of PD-1, the purpose of inhibiting tumor growth is achieved. CASE PRESENTATION: We report a severe hematuria of bevacizumab plus pembrolizumab, in a 58-year-old woman with metastatic cervical cancer. After three cycles every three weeks of consolidation chemotherapy (carboplatin, paclitaxel, bevacizumab) and following three cycles consolidation chemotherapy (carboplatin, paclitaxel, bevacizumab, pembrolizumab), the patient presented a worsening state. Manifested as massive gross hematuria with blood clots. After stopping chemotherapy, cefoxitin, tranexamic acid and hemocoagulase atrox therapy was administered resulting in rapid clinical improvement. The patient was a cervical cancer with bladder metastasis that increases the risk of development of hematuria. Inhibition of VEGF, which has anti-apoptotic, anti-inflammatory, and pro-survival influences on endothelial cells, weakens their regenerative capacity and increases expression of proinflammatory genes leading to weakened supporting layers of blood vessels and, hence, to damaged vascular integrity. In our patient, the development of hematuria may result from the anti-VEGF effect of bevacizumab. In addition, pembrolizumab may also cause bleeding, and the mechanism of bleeding caused by pembrolizumab is currently unclear, which may be related to immune mediation. CONCLUSION: To our knowledge, this is the first case reporting on the development of severe hematuria during bevacizumab plus pembrolizumab treatment, which should alert the clinicians in case of bleeding adverse events onset in older patients under bevacizumab plus pembrolizumab therapy.


Asunto(s)
Neoplasias Pulmonares , Neoplasias del Cuello Uterino , Femenino , Humanos , Anciano , Persona de Mediana Edad , Bevacizumab , Carboplatino/uso terapéutico , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/etiología , Factor A de Crecimiento Endotelial Vascular , Hematuria/etiología , Células Endoteliales , Receptor de Muerte Celular Programada 1 , Paclitaxel/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico
4.
Nature ; 531(7592): 64-9, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26901871

RESUMEN

All Gram-negative bacteria, mitochondria and chloroplasts have outer membrane proteins (OMPs) that perform many fundamental biological processes. The OMPs in Gram-negative bacteria are inserted and folded into the outer membrane by the ß-barrel assembly machinery (BAM). The mechanism involved is poorly understood, owing to the absence of a structure of the entire BAM complex. Here we report two crystal structures of the Escherichia coli BAM complex in two distinct states: an inward-open state and a lateral-open state. Our structures reveal that the five polypeptide transport-associated domains of BamA form a ring architecture with four associated lipoproteins, BamB-BamE, in the periplasm. Our structural, functional studies and molecular dynamics simulations indicate that these subunits rotate with respect to the integral membrane ß-barrel of BamA to induce movement of the ß-strands of the barrel and promote insertion of the nascent OMP.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Cristalografía por Rayos X , Lipoproteínas/química , Lipoproteínas/metabolismo , Modelos Moleculares , Simulación de Dinámica Molecular , Movimiento , Periplasma/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Rotación
5.
J Pharm Pharm Sci ; 25: 377-390, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36608646

RESUMEN

PURPOSE: Vemurafenib received approval for treatment of BRAF V600 variation metastatic melanoma in August 2011. This study analyzed Vemurafenib-related adverse events (AEs) to detect and characterize relevant safety signals using the real-word-data through the Food and Drug Administration Adverse Event Reporting System (FAERS). METHODS: Disproportionality analyses, including the reporting odds ratio (ROR), the healthcare products regulatory agency (MHRA), the Bayesian confidence propagation neural network (BCPNN), and the multiitem gamma Poisson shrinker (MGPS) algorithms, were applied to quantify the signals of vemurafenib-related AEs. RESULTS: Out of 8,042,244 reports gathered from the FAERS, 9554 reports of vemurafenib as the 'primary suspected (PS)' AEs were recognized. Vemurafenib-induced AEs occurrence targeted 23 system organ class (SOC). A total of 138 significant disproportionality PTs was simultaneously reserved according to the four algorithms. Unexpected significant AEs such as sarcoidosis and kidney fibrosis might also occur. The median onset time of vemurafenib-related AEs was 26 days (interquartile range [IQR] 8-97 days), and most of the cases occurred within the first one and two months after vemurafenib initiation. CONCLUSION: Our study detected potential new AEs signals and might provide powerful support for clinical monitoring and risk identification of vemurafenib.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Melanoma , Estados Unidos , Humanos , Farmacovigilancia , Vemurafenib/efectos adversos , Sistemas de Registro de Reacción Adversa a Medicamentos , Teorema de Bayes , Melanoma/tratamiento farmacológico , United States Food and Drug Administration
6.
Proc Natl Acad Sci U S A ; 115(12): E2706-E2715, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29507249

RESUMEN

Lactobacillus reuteri, a Gram-positive bacterial species inhabiting the gastrointestinal tract of vertebrates, displays remarkable host adaptation. Previous mutational analyses of rodent strain L. reuteri 100-23C identified a gene encoding a predicted surface-exposed serine-rich repeat protein (SRRP100-23) that was vital for L. reuteri biofilm formation in mice. SRRPs have emerged as an important group of surface proteins on many pathogens, but no structural information is available in commensal bacteria. Here we report the 2.00-Å and 1.92-Å crystal structures of the binding regions (BRs) of SRRP100-23 and SRRP53608 from L. reuteri ATCC 53608, revealing a unique ß-solenoid fold in this important adhesin family. SRRP53608-BR bound to host epithelial cells and DNA at neutral pH and recognized polygalacturonic acid (PGA), rhamnogalacturonan I, or chondroitin sulfate A at acidic pH. Mutagenesis confirmed the role of the BR putative binding site in the interaction of SRRP53608-BR with PGA. Long molecular dynamics simulations showed that SRRP53608-BR undergoes a pH-dependent conformational change. Together, these findings provide mechanistic insights into the role of SRRPs in host-microbe interactions and open avenues of research into the use of biofilm-forming probiotics against clinically important pathogens.


Asunto(s)
Proteínas Bacterianas/química , Microbioma Gastrointestinal , Limosilactobacillus reuteri/fisiología , Interacciones Microbianas , Adhesinas Bacterianas/química , Adhesinas Bacterianas/metabolismo , Animales , Adhesión Bacteriana/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Células Epiteliales/microbiología , Concentración de Iones de Hidrógeno , Limosilactobacillus reuteri/química , Ratones , Simulación de Dinámica Molecular , Pectinas/metabolismo , Pliegue de Proteína , Secuencias Repetitivas de Aminoácido , Homología de Secuencia de Aminoácido , Serina
7.
Nature ; 511(7507): 52-6, 2014 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-24990744

RESUMEN

Lipopolysaccharide (LPS) is essential for most Gram-negative bacteria and has crucial roles in protection of the bacteria from harsh environments and toxic compounds, including antibiotics. Seven LPS transport proteins (that is, LptA-LptG) form a trans-envelope protein complex responsible for the transport of LPS from the inner membrane to the outer membrane, the mechanism for which is poorly understood. Here we report the first crystal structure of the unique integral membrane LPS translocon LptD-LptE complex. LptD forms a novel 26-stranded ß-barrel, which is to our knowledge the largest ß-barrel reported so far. LptE adopts a roll-like structure located inside the barrel of LptD to form an unprecedented two-protein 'barrel and plug' architecture. The structure, molecular dynamics simulations and functional assays suggest that the hydrophilic O-antigen and the core oligosaccharide of the LPS may pass through the barrel and the lipid A of the LPS may be inserted into the outer leaflet of the outer membrane through a lateral opening between strands ß1 and ß26 of LptD. These findings not only help us to understand important aspects of bacterial outer membrane biogenesis, but also have significant potential for the development of novel drugs against multi-drug resistant pathogenic bacteria.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Lipopolisacáridos/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Salmonella typhimurium/química , Membrana Celular/química , Membrana Celular/metabolismo , Pared Celular/química , Pared Celular/metabolismo , Cristalografía por Rayos X , Lipopolisacáridos/química , Modelos Moleculares , Unión Proteica , Estructura Secundaria de Proteína , Salmonella typhimurium/citología , Relación Estructura-Actividad
8.
Toxicol Appl Pharmacol ; 345: 1-9, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29524504

RESUMEN

BACKGROUND AND PURPOSE: Protein modification by small ubiquitin-like modifier (SUMO) plays a critical role in the pathogenesis of heart diseases. The present study was designed to determine whether ginkgolic acid (GA) as a SUMO-1 inhibitor exerts an inhibitory effect on cardiac fibrosis induced by myocardial infarction (MI). EXPERIMENTAL APPROACH: GA was delivered by osmotic pumps in MI mice. Masson staining, electron microscopy (EM) and echocardiography were used to assess cardiac fibrosis, ultrastructure and function. Expression of SUMO-1, PML, TGF-ß1 and Pin1 was measured with Western blot or Real-time PCR. Collagen content, cell viability and myofibroblast transformation were measured in neonatal mouse cardiac fibroblasts (NMCFs). Promyelocytic leukemia (PML) protein was over-expressed by plasmid transfection. KEY RESULTS: GA improved cardiac fibrosis and dysfunction, and decreased SUMO-1 expression in MI mice. GA (>20 µM) inhibited NMCF viability in a dose-dependent manner. Nontoxic GA (10 µM) restrained angiotensin II (Ang II)-induced myofibroblast transformation and collagen production. GA also inhibited expression of TGF-ß1 mRNA and protein in vitro and in vivo. GA suppressed PML SUMOylation and PML nuclear body (PML-NB) organization, and disrupted expression and recruitment of Pin1 (a positive regulator of TGF-ß1 mRNA), whereas over-expression of PML reversed that. CONCLUSIONS AND IMPLICATIONS: Inhibition of SUMO-1 by GA alleviated MI-induced heart dysfunction and fibrosis, and the SUMOylated PML/Pin1/TGF-ß1 pathway is crucial for GA-inhibited cardiac fibrosis.


Asunto(s)
Infarto del Miocardio/tratamiento farmacológico , Proteína SUMO-1/antagonistas & inhibidores , Salicilatos/uso terapéutico , Animales , Animales Recién Nacidos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Fibrosis/tratamiento farmacológico , Fibrosis/metabolismo , Fibrosis/patología , Masculino , Ratones , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Proteína SUMO-1/metabolismo , Salicilatos/farmacología , Volumen Sistólico/efectos de los fármacos , Volumen Sistólico/fisiología
9.
Mol Ther ; 25(3): 666-678, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28143738

RESUMEN

The promyelocytic leukemia protein (PML) is essential in the assembly of dynamic subnuclear structures called PML nuclear bodies (PML-NBs), which are involved in regulating diverse cellular functions. However, the possibility of PML being involved in cardiac disease has not been examined. In mice undergoing transverse aortic constriction (TAC) and arsenic trioxide (ATO) injection, transforming growth factor ß1 (TGF-ß1) was upregulated along with dynamic alteration of PML SUMOylation. In cultured neonatal mouse cardiac fibroblasts (NMCFs), ATO, angiotensin II (Ang II), and fetal bovine serum (FBS) significantly triggered PML SUMOylation and the assembly of PML-NBs. Inhibition of SUMOylated PML by silencing UBC9, the unique SUMO E2-conjugating enzyme, reduced the development of cardiac fibrosis and partially improved cardiac function in TAC mice. In contrast, enhancing SUMOylated PML accumulation, by silencing RNF4, a poly-SUMO-specific E3 ubiquitin ligase, accelerated the induction of cardiac fibrosis and promoted cardiac function injury. PML colocalized with Pin1 (a positive regulator for TGF-ß1 mRNA expression in PML-NBs) and increased TGF-ß1 activity. These findings suggest that the UBC9/PML/RNF4 axis plays a critical role as an important SUMO pathway in cardiac fibrosis. Modulating the protein levels of the pathway provides an attractive therapeutic target for the treatment of cardiac fibrosis and heart failure.


Asunto(s)
Silenciador del Gen , Miocardio/metabolismo , Miocardio/patología , Proteínas Nucleares/genética , Proteína de la Leucemia Promielocítica/metabolismo , Factores de Transcripción/genética , Enzimas Ubiquitina-Conjugadoras/genética , Angiotensina II/farmacología , Animales , Trióxido de Arsénico , Arsenicales/farmacología , Colágeno/biosíntesis , Fibrosis , Ratones , Miofibroblastos/efectos de los fármacos , Miofibroblastos/metabolismo , Óxidos/farmacología , Unión Proteica , Sumoilación , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Ubiquitina-Proteína Ligasas
10.
Biochem J ; 474(23): 3951-3961, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-28974626

RESUMEN

Outer membrane (OM) ß-barrel proteins play important roles in importing nutrients, exporting wastes and conducting signals in Gram-negative bacteria, mitochondria and chloroplasts. The outer membrane proteins (OMPs) are inserted and assembled into the OM by OMP85 family proteins. In Escherichia coli, the ß-barrel assembly machinery (BAM) contains four lipoproteins such as BamB, BamC, BamD and BamE, and one OMP BamA, forming a 'top hat'-like structure. Structural and functional studies of the E. coli BAM machinery have revealed that the rotation of periplasmic ring may trigger the barrel ß1C-ß6C scissor-like movement that promote the unfolded OMP insertion without using ATP. Here, we report the BamA C-terminal barrel structure of Salmonella enterica Typhimurium str. LT2 and functional assays, which reveal that the BamA's C-terminal residue Trp, the ß16C strand of the barrel and the periplasmic turns are critical for the functionality of BamA. These findings indicate that the unique ß16C strand and the periplasmic turns of BamA are important for the outer membrane insertion and assembly. The periplasmic turns might mediate the rotation of the periplasmic ring to the scissor-like movement of BamA ß1C-ß6C, triggering the OMP insertion. These results are important for understanding the OMP insertion in Gram-negative bacteria, as well as in mitochondria and chloroplasts.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Periplasma/metabolismo , Plásmidos/química , Salmonella typhimurium/metabolismo , Secuencias de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/ultraestructura , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Modelos Moleculares , Mutación , Periplasma/genética , Periplasma/ultraestructura , Plásmidos/metabolismo , Unión Proteica , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/ultraestructura
11.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(11): 1461-1467, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28821406

RESUMEN

Lipopolysaccharide (LPS) is an important component of the outer membrane (OM) of Gram-negative bacteria, playing essential roles in protecting bacteria from harsh environments, in drug resistance and in pathogenesis. LPS is synthesized in the cytoplasm and translocated to the periplasmic side of the inner membrane (IM), where it matures. Seven lipopolysaccharide transport proteins, LptA-G, form a trans­envelope complex that is responsible for LPS extraction from the IM and transporting it across the periplasm to the OM. The LptD/E of the complex transports LPS across the OM and inserts it into the outer leaflet of the OM. In this review we focus upon structural and mechanistic studies of LPS transport proteins, with a particular focus upon the LPS ABC transporter LptB2FG. This ATP binding cassette transporter complex consists of twelve transmembrane segments and has a unique mechanism whereby it extracts LPS from the periplasmic face of the IM through a pair of lateral gates and then powers trans­periplasmic transport to the OM through a slide formed by either of the periplasmic domains of LptF or LptG, LptC, LptA and the N-terminal domain of LptD. The structural and functional studies of the seven lipopolysaccharide transport proteins provide a platform to explore the unusual mechanisms of LPS extraction, transport and insertion from the inner membrane to the outer membrane. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Membrana Celular/metabolismo , Pared Celular/metabolismo , Bacterias Gramnegativas/metabolismo , Lipopolisacáridos/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Adenosina Trifosfato/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Transporte Biológico Activo , Hidrólisis , Lipopolisacáridos/química , Modelos Biológicos , Modelos Moleculares , Conformación Proteica , Relación Estructura-Actividad
12.
J Virol ; 89(13): 6595-607, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25878103

RESUMEN

UNLABELLED: Arenaviruses cause severe hemorrhagic fever diseases in humans, and there are limited preventative and therapeutic measures against these diseases. Previous structural and functional analyses of arenavirus nucleoproteins (NPs) revealed a conserved DEDDH exoribonuclease (RNase) domain that is important for type I interferon (IFN) suppression, but the biological roles of the NP RNase in viral replication and host immune suppression have not been well characterized. Infection of guinea pigs with Pichinde virus (PICV), a prototype arenavirus, can serve as a surrogate small animal model for arenavirus hemorrhagic fevers. In this report, we show that mutation of each of the five RNase catalytic residues of PICV NP diminishes the IFN suppression activity and slightly reduces the viral RNA replication activity. Recombinant PICVs with RNase catalytic mutations can induce high levels of IFNs and barely grow in IFN-competent A549 cells, in sharp contrast to the wild-type (WT) virus, while in IFN-deficient Vero cells, both WT and mutant viruses can replicate at relatively high levels. Upon infection of guinea pigs, the RNase mutant viruses stimulate strong IFN responses, fail to replicate productively, and can become WT revertants. Serial passages of the RNase mutants in vitro can also generate WT revertants. Thus, the NP RNase function is essential for the innate immune suppression that allows the establishment of a productive early viral infection, and it may be partly involved in the process of viral RNA replication. IMPORTANCE: Arenaviruses, such as Lassa, Lujo, and Machupo viruses, can cause severe and deadly hemorrhagic fever diseases in humans, and there are limited preventative and treatment options against these diseases. Development of broad-spectrum antiviral drugs depends on a better mechanistic understanding of the conserved arenavirus proteins in viral infection. The nucleoprotein (NPs) of all arenaviruses carry a unique exoribonuclease (RNase) domain that has been shown to be critical for the suppression of type I interferons. However, the functional roles of the NP RNase in arenavirus replication and host immune suppression have not been characterized systematically. Using a prototype arenavirus, Pichinde virus (PICV), we characterized the viral growth and innate immune suppression of recombinant RNase-defective mutants in both cell culture and guinea pig models. Our study suggests that the NP RNase plays an essential role in the suppression of host innate immunity, and possibly in viral RNA replication, and that it can serve as a novel target for developing antiviral drugs against arenavirus pathogens.


Asunto(s)
Exorribonucleasas/metabolismo , Interacciones Huésped-Patógeno , Evasión Inmune , Nucleoproteínas/metabolismo , Virus Pichinde/enzimología , Virus Pichinde/fisiología , Replicación Viral , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Animales , Infecciones por Arenaviridae/inmunología , Infecciones por Arenaviridae/virología , Línea Celular , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Exorribonucleasas/genética , Cobayas , Humanos , Masculino , Nucleoproteínas/genética , Virus Pichinde/genética , Virus Pichinde/inmunología
13.
Nature ; 468(7325): 779-83, 2010 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-21085117

RESUMEN

Lassa virus, the causative agent of Lassa fever, causes thousands of deaths annually and is a biological threat agent, for which there is no vaccine and limited therapy. The nucleoprotein (NP) of Lassa virus has essential roles in viral RNA synthesis and immune suppression, the molecular mechanisms of which are poorly understood. Here we report the crystal structure of Lassa virus NP at 1.80 Å resolution, which reveals amino (N)- and carboxy (C)-terminal domains with structures unlike any of the reported viral NPs. The N domain folds into a novel structure with a deep cavity for binding the m7GpppN cap structure that is required for viral RNA transcription, whereas the C domain contains 3'-5' exoribonuclease activity involved in suppressing interferon induction. To our knowledge this is the first X-ray crystal structure solved for an arenaviral NP, which reveals its unexpected functions and indicates unique mechanisms in cap binding and immune evasion. These findings provide great potential for vaccine and drug development.


Asunto(s)
Evasión Inmune/inmunología , Virus Lassa/química , Virus Lassa/inmunología , Nucleoproteínas/química , Nucleoproteínas/metabolismo , Caperuzas de ARN/metabolismo , Proteínas Virales/química , Cristalografía por Rayos X , Exorribonucleasas/química , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Interferones/biosíntesis , Interferones/inmunología , Virus Lassa/genética , Modelos Moleculares , Nucleoproteínas/genética , Nucleoproteínas/inmunología , Estructura Terciaria de Proteína , Análogos de Caperuza de ARN/química , Análogos de Caperuza de ARN/metabolismo , Caperuzas de ARN/química , ARN Viral/biosíntesis , ARN Viral/genética , ARN Viral/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transcripción Genética , Proteínas Virales/genética , Proteínas Virales/inmunología , Proteínas Virales/metabolismo
14.
RNA ; 19(8): 1129-36, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23798666

RESUMEN

Schmallenberg virus (SBV) is a newly emerged orthobunyavirus (family Bunyaviridae) that has caused severe disease in the offspring of farm animals across Europe. Like all orthobunyaviruses, SBV contains a tripartite negative-sense RNA genome that is encapsidated by the viral nucleocapsid (N) protein in the form of a ribonucleoprotein complex (RNP). We recently reported the three-dimensional structure of SBV N that revealed a novel fold. Here we report the crystal structure of the SBV N protein in complex with a 42-nt-long RNA to 2.16 Å resolution. The complex comprises a tetramer of N that encapsidates the RNA as a cross-shape inside the protein ring structure, with each protomer bound to 11 ribonucleotides. Eight bases are bound in the positively charged cleft between the N- and C-terminal domains of N, and three bases are shielded by the extended N-terminal arm. SBV N appears to sequester RNA using a different mechanism compared with the nucleoproteins of other negative-sense RNA viruses. Furthermore, the structure suggests that RNA binding results in conformational changes of some residues in the RNA-binding cleft and the N- and C-terminal arms. Our results provide new insights into the novel mechanism of RNA encapsidation by orthobunyaviruses.


Asunto(s)
Proteínas de la Nucleocápside/química , Orthobunyavirus/química , ARN Viral/química , Animales , Sitios de Unión , Cristalografía por Rayos X , Sustancias Macromoleculares/química , Sustancias Macromoleculares/ultraestructura , Microscopía Electrónica , Modelos Moleculares , Conformación de Ácido Nucleico , Proteínas de la Nucleocápside/ultraestructura , Orthobunyavirus/patogenicidad , Orthobunyavirus/ultraestructura , Estructura Cuaternaria de Proteína , Electricidad Estática
15.
J Biol Chem ; 288(23): 16949-16959, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-23615902

RESUMEN

A hallmark of severe Lassa fever is the generalized immune suppression, the mechanism of which is poorly understood. Lassa virus (LASV) nucleoprotein (NP) is the only known 3'-5' exoribonuclease that can suppress type I interferon (IFN) production possibly by degrading immune-stimulatory RNAs. How this unique enzymatic activity of LASV NP recognizes and processes RNA substrates is unknown. We provide an atomic view of a catalytically active exoribonuclease domain of LASV NP (LASV NP-C) in the process of degrading a 5' triphosphate double-stranded (ds) RNA substrate, a typical pathogen-associated molecular pattern molecule, to induce type I IFN production. Additionally, we provide for the first time a high-resolution crystal structure of an active exoribonuclease domain of Tacaribe arenavirus (TCRV) NP. Coupled with the in vitro enzymatic and cell-based interferon suppression assays, these structural analyses strongly support a unified model of an exoribonuclease-dependent IFN suppression mechanism shared by all known arenaviruses. New knowledge learned from these studies should aid the development of therapeutics against pathogenic arenaviruses that can infect hundreds of thousands of individuals and kill thousands annually.


Asunto(s)
Arenavirus del Nuevo Mundo , Exorribonucleasas , Tolerancia Inmunológica , Interferón Tipo I , Fiebre de Lassa , Virus Lassa , Nucleoproteínas , ARN Bicatenario , ARN Viral , Proteínas Virales , Arenavirus del Nuevo Mundo/enzimología , Arenavirus del Nuevo Mundo/genética , Arenavirus del Nuevo Mundo/inmunología , Línea Celular , Cristalografía por Rayos X , Exorribonucleasas/química , Exorribonucleasas/genética , Exorribonucleasas/inmunología , Exorribonucleasas/metabolismo , Humanos , Interferón Tipo I/inmunología , Interferón Tipo I/metabolismo , Fiebre de Lassa/genética , Fiebre de Lassa/inmunología , Fiebre de Lassa/metabolismo , Virus Lassa/enzimología , Virus Lassa/genética , Virus Lassa/inmunología , Nucleoproteínas/química , Nucleoproteínas/genética , Nucleoproteínas/inmunología , Nucleoproteínas/metabolismo , Estructura Terciaria de Proteína , ARN Bicatenario/química , ARN Bicatenario/genética , ARN Bicatenario/inmunología , ARN Bicatenario/metabolismo , ARN Viral/química , ARN Viral/genética , ARN Viral/inmunología , ARN Viral/metabolismo , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/inmunología , Proteínas Virales/metabolismo
16.
Biochem Biophys Res Commun ; 452(3): 443-9, 2014 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-25172661

RESUMEN

Lipopolysaccharide (LPS) is the main component of the outer membrane of Gram-negative bacteria, which plays an essential role in protecting the bacteria from harsh conditions and antibiotics. LPS molecules are transported from the inner membrane to the outer membrane by seven LPS transport proteins. LptB is vital in hydrolyzing ATP to provide energy for LPS transport, however this mechanism is not very clear. Here we report wild-type LptB crystal structure in complex with ATP and Mg(2+), which reveals that its structure is conserved with other nucleotide-binding proteins (NBD). Structural, functional and electron microscopic studies demonstrated that the ATP binding residues, including K42 and T43, are crucial for LptB's ATPase activity, LPS transport and the vitality of Escherichia coli cells with the exceptions of H195A and Q85A; the H195A mutation does not lower its ATPase activity but impairs LPS transport, and Q85A does not alter ATPase activity but causes cell death. Our data also suggest that two protomers of LptB have to work together for ATP hydrolysis and LPS transport. These results have significant impacts in understanding the LPS transport mechanism and developing new antibiotics.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Adenosina Trifosfato/química , Proteínas de Escherichia coli/química , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Lipopolisacáridos/química , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Secuencia Conservada , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Lipopolisacáridos/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
17.
J Virol ; 87(10): 5593-601, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23468499

RESUMEN

Schmallenberg virus (SBV), a newly emerged orthobunyavirus (family Bunyaviridae), has spread rapidly across Europe and has caused congenital abnormalities in the offspring of cattle, sheep, and goats. Like other orthobunyaviruses, SBV contains a tripartite negative-sense RNA genome that encodes four structural and two nonstructural proteins. The nucleoprotein (N) encapsidates the three viral genomic RNA segments and plays a crucial role in viral RNA transcription and replication. Here we report the crystal structure of the bacterially expressed SBV nucleoprotein to a 3.06-Å resolution. The protomer is composed of two domains (N-terminal and C-terminal domains) with flexible N-terminal and C-terminal arms. The N protein has a novel fold and forms a central positively charged cleft for genomic RNA binding. The nucleoprotein purified under native conditions forms a tetramer, while the nucleoprotein obtained following denaturation and refolding forms a hexamer. Our structural and functional analyses demonstrate that both N-terminal and C-terminal arms are involved in N-N interaction and oligomerization and play an essential role in viral RNA synthesis, suggesting a novel mechanism for viral RNA encapsidation and transcription.


Asunto(s)
Nucleoproteínas/química , Orthobunyavirus/química , Orthobunyavirus/fisiología , Ensamble de Virus , Secuencia de Aminoácidos , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Multimerización de Proteína , Proteínas de Unión al ARN/química , Alineación de Secuencia , Replicación Viral
18.
Int J Biol Macromol ; 270(Pt 2): 132231, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38735603

RESUMEN

Mpox virus has wildly spread over 108 non-endemic regions in the world since May 2022. DNA replication of mpox is performed by DNA polymerase machinery F8-A22-E4, which is known as a great drug target. Brincidofovir and cidofovir are reported to have broad-spectrum antiviral activity against poxviruses, including mpox virus in animal models. However, the molecular mechanism is not understood. Here we report cryogenic electron microscopy structures of mpox viral F8-A22-E4 in complex with a DNA duplex, or dCTP and the DNA duplex, or cidofovir diphosphate and the DNA duplex at resolution of 3.22, 2.98 and 2.79 Å, respectively. Our structural work and DNA replication inhibition assays reveal that cidofovir diphosphate is located at the dCTP binding position with a different conformation to compete with dCTP to incorporate into the DNA and inhibit DNA synthesis. Conformation of both F8-A22-E4 and DNA is changed from the pre-dNTP binding state to DNA synthesizing state after dCTP or cidofovir diphosphate is bound, suggesting a coupling mechanism. This work provides the structural basis of DNA synthesis inhibition by brincidofovir and cidofovir, providing a rational strategy for new therapeutical development for mpox virus and other pox viruses.


Asunto(s)
Antivirales , Cidofovir , Citosina , Replicación del ADN , Organofosfonatos , Replicación Viral , Cidofovir/farmacología , Cidofovir/química , Organofosfonatos/farmacología , Organofosfonatos/química , Citosina/análogos & derivados , Citosina/farmacología , Citosina/química , Replicación del ADN/efectos de los fármacos , Humanos , Antivirales/farmacología , Antivirales/química , Replicación Viral/efectos de los fármacos , ADN Viral , Modelos Moleculares
20.
Front Microbiol ; 14: 1239537, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37808302

RESUMEN

Lipopolysaccharide (LPS) is essential for most gram-negative bacteria and plays an important role in serum resistance, pathogenesis, drug resistance, and protection from harsh environments. The outer core oligosaccharide of LPS is involved in bacterial recognition and invasion of host cells. The D-galactosyltransferase WaaB is responsible for the addition of D-galactose to the outer core oligosaccharide of LPS, which is essential for Salmonella typhimurium invasion. Here we report the first crystal structures of WaaB and WaaB in complex with UDP to resolutions of 1.8 and 1.9 Å, respectively. Mutagenesis and enzyme activity assays confirmed that residues V186, K195, I216, W243, E276, and E269 of WaaB are essential for the binding and hydrolysis of UDP-galactose. The elucidation of the catalytic mechanism of WaaB is of great importance and could potentially be used for the design of novel therapeutic reagents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA