RESUMEN
Exploring three-dimensional chemical space is an important research objective of organic synthetic chemistry. Oxidative dearomatization (ODA) is one of the most important and powerful tools for realizing this goal, because it changes and removes aromatic structures from aromatic compounds to increase levels of saturation and stereoisomerism by direct addition reactions between functional groups with aromatic cores under oxidative conditions. As a hot topic in indole chemistry, the synthetic value of the oxidative dearomatization of indoles has been well recognized and has witnessed rapid development recently, since it could provide convenient and unprecedented access to fabricate high-value-added three-dimensional oxindole skeletons, such as C-quaternary indolones, polycycloindolones and spiroindolones, and be widely applied to the total synthesis of these oxindole alkaloids. Therefore, this article provides a review of recent developments in oxidative dearomatization involving the C-H bonds of indoles. In this article, the features and mechanisms of different types of ODA reactions of indoles are summarized and represented, and asymmetric synthesis methods and their applications are illustrated with examples, and future development trends in this field are predicted at the end.
RESUMEN
Establishing three-dimensional chemicals by using the C2-C3 π bond of indoles has always been a research hotspot in organic synthesis; however, employing the oxidative C2-C3 π bond of indoles to generate imine which would lead to the N1-C2 π bond cyclization under metal-free conditions is still rare. Here, we report a bio-inspired synthesis of triazolo[1,2-a]indolines by the oxidative cyclization between NH-indoles and azomethine imines with 3,3-dimethyldioxirane as the sole oxidant under metal-free and mild conditions. This finding represents an elegant instance of tri-functionalization of NH-indoles, which provides rapid access to a broad range of triazolo[1,2-a]indolines with tetrahydroisoquinolines in one single step. Up to 86% yield and above 20:1 dr value are observed. The radical mechanism and proton migration process have been speculated.
Asunto(s)
Iminas , Indoles , Ciclización , Indoles/química , Oxidación-Reducción , Estrés Oxidativo , CatálisisRESUMEN
The reductive removal of U(VI) by nanoscale zerovalent iron (NZVI) was enhanced by using Na(+)-saturated bentonite (Na-bent) as the support, and the mechanism for the enhanced removal were investigated comprehensively. Under the same experimental conditions, NZVI supported on the negatively charged Na-bent showed much higher removal efficiency (99.2%) of cationic U(VI) than either bare NZVI (48.3%) or NZVI supported on the positively charged bentonite (Al-bent) did. Subsequent experimental investigations revealed the unique roles of bentonite on enhancing the reactivity and reusability of NZVI. First, Na-bent can buffer the pH in reaction media, besides preventing NZVI from aggregation. Second, Na-bent promoted the mass transfer of U(VI) from solution to NZVI surface, leading to the enhanced removal efficiency. Third, the bentonite may transfer some insoluble reduction products away from the iron surface according to X-ray absorption fine structure (XAFS) study. Finally, Na-bent as the adsorbent to Fe(II) makes it more reactive with U(VI), which enhanced stoichiometrically the reduction capacity of NZVI besides accelerating the reaction rate.
RESUMEN
Background: Both hypoxia exposure and physical exercise before ascending have been proved to promote high altitude acclimatization, whether the combination of these two methods can bring about a better effect remains uncertain. Therefore, we designed this study to evaluate the effect of hypoxic preacclimatization combining intermittent hypoxia exposure (IHE) and physical exercise on the tolerance to acute hypoxia and screen the optimal preacclimatization scheme among the lowlanders. Methods: A total of 120 Han Chinese young men were enrolled and randomly assigned into four groups, including the control group and three experimental groups with hypoxic preacclimatization of 5-day rest, 5-day exercise, and 3-day exercise in a hypobaric chamber, respectively. Main physical parameters for hypoxia acclimatization, AMS incidence, physical and mental capacity were measured for each participant in the hypobaric chamber simulated to the altitude of 4500 m in the effect evaluation stage. The effect was compared between different schemes. Results: During the effect evaluation stage, SpO2 of the 5-day rest group and 5-day exercise group was significantly higher than that of the control group (p = 0.001 and p = 0.006, respectively). The participants with 5-day rest had significantly lower HR than the controls (p = 0.018). No significant differences of AMS incidence were found among the four groups, while the proportion of AMS headache symptom (moderate and severe vs. mild) was significantly lower in the 3-day exercise group than that in the control group (p = 0.002). The 5-day exercise group had significantly higher VO2max, than the other three groups (p = 0.033, p < 0.001, and p = 0.023, respectively). The 5-day exercise group also had significantly higher digital symbol and pursuit aiming test scores, while shorter color selection reaction time than the control group (p = 0.005, p = 0.005, and p = 0.004, respectively). Conclusion: Hypoxic preacclimatization combining IHE with physical exercise appears to be efficient in promoting the tolerance to acute hypoxia. Hypoxia duration and physical exercise of moderate intensity are helpful for improvement of SpO2 and HR, relief of AMS headache symptoms, and enhancement of mental and physical operation capacity.
RESUMEN
OBJECTIVE: The high-altitude hypoxia environment will cause poor acclimatization in a portion of the population. Remote ischemic preconditioningï¼RIPCï¼has been demonstrated to prevent cardiovascular and cerebrovascular diseases under ischemic or hypoxic conditions. However, its role in improving acclimatization and preventing acute mountain sickness (AMS) at high altitude has been undetermined. This study aims to estimate the effect of RIPC on acclimatization of individuals exposed to high altitude. METHODS: The project was designed as a randomized controlled trial with 82 healthy young males, who received RIPC training once a day for 7 consecutive days. Then they were transported by aircraft to a high altitude (3680 m) and examined for 6 days. Lake Louise Score(LLS) of AMS, physiological index, self-reported sleep pattern, and Pittsburgh Sleep Quality Indexï¼PSQIï¼score were applied to assess the acclimatization to the high altitude. Five neurobehavioral tests were conducted to assess cognitive function. RESULTS: The result showed that the RIPC group had a significantly lower AMSscore than the control group (2.43 ± 1.58 vs 3.29 ± 2.03, respectively; adjusted mean difference-0.84, 95% confidence interval-1.61 to -0.06, P = 0.036). and there was no significant difference in AMS incidence between the two groups (25.0% vs 28.57%, P = 0.555). The RIPC group performed better than the control group in spatial memory span score (11[9-12] vs 10[7.5-11], P=0.025) and the passing digit (7[6-7.5] vs 6[5-7], P= 0.001). Spatial memory was significantly higher in the high-altitude RIPC group than in the low-altitude RIPC group (Pï¼0.01). And the RIPC group obtained significantly lower self-reported sleep quality score (P = 0.024) and PSQI score (P = 0.031). CONCLUSIONS: The RIPC treatment improved spatial memory and sleep quality in subjects exposed to acute hypoxic exposure and this may lead to improved performance at high altitude.
Asunto(s)
Mal de Altura , Precondicionamiento Isquémico , Masculino , Humanos , Altitud , Memoria Espacial , Mal de Altura/epidemiología , Enfermedad Aguda , Hipoxia , Sueño , AclimataciónRESUMEN
Activation of hydrogen peroxide (H2O2) with biochar is a sustainable and low-cost approach for advanced oxidation of organic pollutants, but faces the challenge of a low yield of hydroxyl radical (ËOH). Herein, we hypothesize that the activation efficiency of H2O2 can be enhanced through co-catalysis of trace dissolved iron (Fe) with biochar. Two biochar samples derived from different feedstock, namely LB from liquor-making residue and WB from wood sawdust, were tested in the co-catalytic systems using trace Fe(iii) (0.3 mg L-1). The cumulative ËOH production in [Fe(iii) + LB]/H2O2 was measured to be 3.28 times that in LB/H2O2, while the cumulative ËOH production in [Fe(iii) + WB]/H2O2 was 11.9 times that in WB/H2O2. No extra consumption of H2O2 was observed in LB/H2O2 or WB/H2O2 after addition of trace Fe(iii). Consequently, the reaction rate constants (k obs) for oxidation of pollutants (2,4-dichlorophenoxyacetic acid and sulfamethazine) were enhanced by 3.13-9.16 times. Other iron species including dissolved Fe(ii) and iron minerals showed a similar effect on catalyzing 2,4-D oxidation by biochar/H2O2. The interactions involved in adsorption and reduction of Fe(iii) by biochar in which the defects acted as electron donors and oxygen-containing functional groups bridged the electron transfer. The fast regeneration of Fe(ii) in the co-catalytic system resulted in the sustainable ËOH production, thus the efficient oxidation of pollutants comparable to other advanced oxidation processes was achieved by using dissolved iron at a concentration as low as the concentration that can be found in natural water.
RESUMEN
It is suggested that remote ischemic preconditioning (RIPC) may be a promising treatment for improving healthy adults' cognitive control. However, direct empirical evidence was absent. Therefore, this study aims to provide evidence for the impact of RIPC on cognitive control. Sixty healthy young male volunteers were recruited, and 30 of them received 1-week RIPC treatment (RIPC group), while the rest did not receive RIPC (control group). Their cognitive control before and after RIPC treatment was evaluated using the classic Stroop task, and the scalp electricity activity was recorded by event-related potentials (ERPs). The behavioral results showed a conventional Stroop interference effect of both reaction times (RTs) and the accuracy rate (ACC), but the Stroop interference effect of RTs significantly decreased in the posttest compared to the pretest. Furthermore, at the electrophysiological level, ERP data showed that N450 and SP for incongruent trials were larger than that for congruent trials. Importantly, the SP differential amplitude increased after RIPC treatment, whereas there was no significant change in the control group. These results implied that RIPC treatment could improve cognitive control, especially conflict resolving in the Stroop task.
RESUMEN
Remote ischemic preconditioning (RIPC) may improve exercise performance. However, the influence of RIPC on aerobic performance and underlying physiological mechanisms during hypobaric hypoxia (HH) exposure remains relatively uncertain. Here, we systematically evaluated the potential performance benefits and underlying mechanisms of RIPC during HH exposure. Seventy-nine healthy participants were randomly assigned to receive sham intervention or RIPC (4 × 5 min occlusion 180 mm Hg/reperfusion 0 mm Hg, bilaterally on the upper arms) for 8 consecutive days in phases 1 (24 participants) and phase 2 (55 participants). In the phases 1, we measured the change in maximal oxygen uptake capacity (VO2max) and muscle oxygenation (SmO2) on the leg during a graded exercise test. We also measured regional cerebral oxygenation (rSO2) on the forehead. These measures and physiological variables, such as cardiovascular hemodynamic parameters and heart rate variability index, were used to evaluate the intervention effect of RIPC on the changes in bodily functions caused by HH exposure. In the phase 2, plasma protein mass spectrometry was then performed after RIPC intervention, and the results were further evaluated using ELISA tests to assess possible mechanisms. The results suggested that RIPC intervention improved VO2max (11.29%) and accelerated both the maximum (18.13%) and minimum (53%) values of SmO2 and rSO2 (6.88%) compared to sham intervention in hypobaric hypoxia exposure. Cardiovascular hemodynamic parameters (SV, SVRI, PPV% and SpMet%) and the heart rate variability index (Mean RR, Mean HR, RMSSD, pNN50, Lfnu, Hfnu, SD1, SD2/SD1, ApEn, SampEn, DFA1and DFA2) were evaluated. Protein sequence analysis showed 42 unregulated and six downregulated proteins in the plasma of the RIPC group compared to the sham group after HH exposure. Three proteins, thymosin ß4 (Tß4), heat shock protein-70 (HSP70), and heat shock protein-90 (HSP90), were significantly altered in the plasma of the RIPC group before and after HH exposure. Our data demonstrated that in acute HH exposure, RIPC mitigates the decline in VO2max and regional oxygenation, as well as physiological variables, such as cardiovascular hemodynamic parameters and the heart rate variability index, by influencing plasma Tß4, HSP70, and HSP90. These data suggest that RIPC may be beneficial for acute HH exposure.
RESUMEN
Background: Neuron apoptosis, regulated by endoplasmic reticulum (ER) stress in the hippocampus, is an essential factor influencing the cognitive impairment induced by hypobaric hypoxia. Hypoxia mainly changes the activating transcription factor (ATF6) pathway of ER stress. However, the role of ATF6 in neuron survival, apoptosis, and upstream regulation is still controversial. Methods: We established a hypobaric hypoxia-induced C57BL/6 murine model and cell lines exposed to 1% hypoxia, including PC12 and HT22. First, we tested the expressions of interleukin 6 (IL-6), IL-1ß, and IL-10 in C57BL/6 mice's hippocampus under hypoxia using enzyme-linked immunosorbent assay (ELISA). We determined the signal transducer and activator of transcription 3 (STAT3) phosphorylation at tyrosine (Tyr)705 by western blot and the expression of ATF6, 78-kDa glucose-regulated protein (GRP78), and C/-EBP homologous protein (CHOP) related to ER stress by immunofluorescence (IF), western blot, and qRT-PCR; they were then verified on the cell model. Additionally, IL-6 (40 ng/mL) and STAT3 siRNA were used to treat the PC12 cells for 48 and 4 h to activate or silence STAT3, respectively. Subsequently, the cells of siRNA group were exposed to 1% hypoxia for 48 h. Furthermore, the ATF6 and CHOP expressions were detected with western blot and qRT-PCR. Finally, we examined the binding of STAT3 to the ATF6 promoter by chromatin immunoprecipitation (ChIP)-seq. Results: The results showed that IL-6 increased, IL-10 decreased in the hypoxia group, and IL-1ß showed no difference between the hypoxia and the normoxia groups. Neuron apoptosis was significantly elevated by exposure to hypoxia for 48h in PC12 cells. The hypobaric hypoxia-induced ER stress proteins, ATF6, GRP78, and CHOP, and the p-STAT3 (Tyr705) expressions increased both in in vivo and in vitro. Besides, STAT3 silencing significantly promoted the ATF6 expression and inhibited CHOP, while STAT3 activation downregulated the expression of ATF6 and upregulated CHOP in PC12 cells. The ChIP-seq assay demonstrated that p-STAT3 (Tyr705) protein could bind to the ATF6 promoter region in HT22 cells. Conclusion: Phosphorylation of STAT3 at the Tyr705 site contributes to hypoxia-induced neuron apoptosis by downregulating ATF6, which might explain the inflammatory reaction and apoptosis of the hippocampal neurons induced by ER stress.
RESUMEN
(R)-ethyl-3-hydroxyglutarate with highly optical purity (> or = 99%) can be used as a novel precursor for synthesis of chiral side chain of rosuvastatin. In this study, a novel synthesis route of (R)-ethyl-3-hydroxyglutarate by whole microorganism cells from racemic ethyl 4-cyano-3-hydroxybutyate was created. A strain ZJB-0910 capable of transforming racemic beta-hydroxy aliphatic nitrile was isolated by employing a screening method based on a colorimetric reaction of Co(2+) ion with ammonia, and identified as Rhodococcus erythropolis based on its morphology, physiological tests, Biolog, and the 16S rDNA sequence. After cultivation in a sterilized medium with composition of 20 g glucose, 5 g yeast extract, 0.5 g KH(2)PO(4), 0.5 g K(2)HPO(4), 0.2 g MgSO(4).7H(2)O per liter at 30 degrees C and 150 rpm for 48 h, the whole cells of R. erythropolis ZJB-0910 were prepared as a catalyst in (R)-enantioselective hydrolysis of racemic ethyl 4-cyano-3-hydroxybutyate for synthesis of (R)-ethyl-3-hydroxyglutarate, without bearing hydrolase activity for the ester bond of ethyl 4-cyano-3-hydroxybutyate. Under the optimized biotransformation conditions of pH 7.5, 30 degrees C,and 20 mM substrate concentration, (R)-ethyl-3-hydroxyglutarate with 46.2% yield (ee>99%) was afforded, and its chemical structure was determined by ESI-MS, NMR, and IR. The apparent Michaelis constant K(m) and maximum rate Vmax for this biocatalytic reaction were 0.01 M and 85.6 micromol min(-1)g(-1), respectively.
Asunto(s)
Glutaratos/metabolismo , Rhodococcus/metabolismo , Microbiología del Suelo , Biotransformación , Glutaratos/química , Hidrólisis , Datos de Secuencia Molecular , Filogenia , Rhodococcus/clasificación , Rhodococcus/genética , Rhodococcus/aislamiento & purificación , EstereoisomerismoRESUMEN
Nonionic and anionic surfactants often occur in anaerobic environments, but their roles in the removal of organic contaminants by Fe-bearing mineral/Fe(II) have not been determined. In this study, batch experiments were performed to investigate the effects of a nonionic surfactant (TX-100) and an anionic surfactant (SDBS) on the removal of nitrobenzene (NB) by Fe-bearing montmorillonite (FM)/Fe(II). Mössbauer spectrum and XPS were applied to analyze the edge surface bound Fe(II) and secondary minerals formed on FM. The contribution of surfactant to the enrichment of NB on FM was studied. The results showed that TX-100 and SDBS had opposite effects on the removal of NB by FM/Fe(II) at neutral pH. The presence of TX-100 improved the removal efficiency of NB from 36.4% to 70.0%, and increased the initial removal rate by 1.7 times. This enhancement effect was mainly attributed to the formation of more active edge surface bound Fe(II) that can reduce more NB to aniline. Formation of more magnetite on FM and selective enrichment of NB on the reactive surface also contributed to the removal of NB. In contrast, the presence of SDBS reduced the amount of edge surface bound Fe(II) via formation of SDBS-Fe(II) complex, which decreased the removal efficiency of NB.
RESUMEN
Surfactants are easily accumulated in groundwater, sediment, and aquifers, due to their excessive use in household, industrial, and agricultural processes. These residual surfactants are expected to influence the transformation and fate of organic contaminants by Fe(II) sorbed on iron oxides in anaerobic environments. Here, we investigated the effects of various surfactants including nonionic TX-100, anionic SDBS and bio-surfactant saponin on the removal of nitrobenzene (NB) by Fe(II) sorbed on goethite (goethite/Fe(II)) through batch experiments. We also elucidated the mechanism behind the effects by XPS, XRD, and determination of the amounts of sorbed Fe(II) on goethite. The results showed that the presence of TX-100 improved NB removal from 77.2% in the absence of surfactant, to 93.8% within 6â¯h, and improved the removal rate by about 1.3 times. In contrast, the presence of SDBS decreased the removal efficiency to 45.5%, and the presence of saponin nearly inhibited the removal of NB completely. The removed NB was finally nearly reduced to aniline in the absence or presence of surfactants, except in the case of saponin. The amounts of sorbed Fe(II) listed in the sequence as goethite/Fe(II)+TX-100â¯>â¯goethite/Fe(II)â¯>â¯goethite/Fe(II)+SDBSâ¯>â¯goethite/Fe(II)+saponin, and this order negatively correlated with that in the redox potential of these systems. These results confirmed that the presence of surfactants influenced the sorption of Fe(II) on goethite and changed the reactivity of goethite/Fe(II) for NB removal. This finding will promote a clear understanding of the impact of coexisting surfactants on the transformation and fate of organic contaminants in real anaerobic environments.
RESUMEN
BACKGROUND: Acute mountain sickness (AMS) is a crucial public health problem for high altitude travelers. Discriminating individuals who are not developing (AMS resistance, AMS-) from developing AMS (AMS susceptibility, AMS+) at baseline would be vital for disease prevention. Salivary microRNAs (miRNAs) have emerged as promising non-invasive biomarkers for various diseases. Thus, the aim of our study was to identify the potential roles of salivary miRNAs in identifying AMS- individuals pre-exposed to high altitude. Moreover, as hypoxia is the triggering factor for AMS, present study also explored the association between cerebral tissue oxygenation indices (TOI) and AMS development after exposed to high altitude, which was the complementary aim. METHODS: In this study, 124 healthy men were recruited, and were exposed at simulated high altitude of 4,500 m. Salivary miR-134-3p and miR-15b-5p were measured at baseline (200 m). AMS was diagnosed based on Lake Louise Scoring System at 4,500 m. The measurements of physiological parameters were recorded at both the altitudes. RESULTS: Salivary miR-134-3p and miR-15b-5p were significantly up-regulated in AMS- individuals as compared to the AMS+ (p < 0.05). In addition, the combination of these miRNAs generated a high power for discriminating the AMS- from AMS+ at baseline (AUC: 0.811, 95% CI: 0.731-0.876, p < 0.001). Moreover, the value of cerebral TOIs at 4,500 m were significantly higher in AMS- individuals, compared to AMS+ (p < 0.01). CONCLUSION: Our study reveals for the first time that salivary miR-134-3p and miR-15b-5p can be used as non-invasive biomarkers for predicting AMS- individuals pre-exposed to high altitude.
RESUMEN
Controlled-release formulations of the herbicide acetochlor were prepared by using carboxylmethylcellulose (CMC) gel and different types of clay, which were obtained by acid activation, pillared with metal hydroxides, or saturated with organic cations. The effect of formulation parameters (amount and type of clay used, cross-linking time, and drying of the hydrogel formulations) on the acetochlor release rate from different formulations was evaluated by water-release studies. The time taken for 50% of acetochlor to be released, t 50, showed a wide variation (151-522 h) for dried gel formulations, the largest value corresponding to the formulation incorporating aluminum hydroxide pillared clay into CMC gels. The release rate of acetochlor from clay/CMC hydrogel formulations decreased with the increase of the hydrogels' cross-linking time (t50 values ranged from 2.18 to 14.0 h for cross-linking times ranging from 2.0 to 120 min). The performance of inorganic clays in dried gel formulations on slowing the release of acetochlor is related to their sorption capacities, but the addition of organic clay did not lead to the slowest release despite its highest sorption capacity. According to the parameters of an empirical equation used to fit herbicide-release data, the release of acetochlor from clay/CMC gel formulations is controlled by diffusion mechanism.
Asunto(s)
Silicatos de Aluminio , Carboximetilcelulosa de Sodio/química , Herbicidas/química , Toluidinas/química , Adsorción , Arcilla , Reactivos de Enlaces Cruzados , Difusión , Hidrogel de Polietilenoglicol-Dimetacrilato , Cinética , Agua/química , Contaminación del Agua/prevención & controlRESUMEN
Nanoscale zero valent iron (NZVI) can remove Ni(II) from wastewater through surface adsorption and then reduction into lower-toxic Ni0, but the reduction is often blocked by the iron oxide shell of NZVI. In this study, the negatively charged Na-saturated bentonite (Na-bent) with high adsorption capacity to Ni(II) was used to support NZVI for improving the removal and reduction of Ni(II), and the functions of Na-bent were investigated by X-ray photoelectron micro-spectroscopy (XPS), transmission electron microscope (TEM) and Fe(II) determination. The results showed that Na-bent as a carrier could enrich Ni(II) on the reaction surface, protect the surface of NZVI from oxidation, prevent the aggregation of NZVI particles, and decrease the iron oxides products on NZVI surface by pH buffering. Therefore, NZVI/Na-bent not only showed much higher removal efficiency of Ni(II) (98.5%) than the sum (48.8%) of those by bare NZVI removal (41.9%) and by Na-bent adsorption (6.9%), but also greatly enhanced the reduction efficiency of Ni(II) into Ni0 by facilitating the electron transfer from Fe0 core to the surface-adsorbed Ni(II). In general, the unique property of bentonites will provide effective solutions to support NZVI for enhancing the removal and transformation of various environmental contaminants.
RESUMEN
The zero-valent iron permeable reactive barrier (ZVI-PRB) is a promising technology for in-situ groundwater remediation. However, its long-term performance often declined due to the blocked reactive sites by corrosion products and by interference of co-existing solutes. In order to address these issues, a pillared bentonite (Al-bent) was homogeneously mixed with ZVI for removing selenate (Se(VI)) from simulated groundwater in column experiments. The Se(VI) removal was enhanced because first Al-bent could facilitate the mass transfer of Se(VI) from solution to iron surface and accelerate Se(VI) reduction. XANES analysis indicated that Se(VI) was almost completely reduced to Se(0) and Se(-II) of less toxicity and solubility by the ZVI/Al-bent mixture, and the buffering effect of Al-bent could maintain the pH at a lower level that favored the Se(VI) removal. Besides, Al-bent could transfer the corrosion products away from iron surface, leading to the enhanced reactivity and longevity of ZVI. The inhibition on reactivity towards Se(VI) in both the single ZVI and the ZVI/Al-bent systems increased in the order of Cl(-)
RESUMEN
Biochars' properties will change after application in soil due to the interactions with soil constituents, which would then impact the performance of biochars as soil amendment. For a better understanding on these interactions, two woody biochars of different surface areas (SA) were physically treated with aluminum oxide (Al-oxide) to investigate its potential influence on biochars' sorption property. Both the micropore area and mesopore (17â¼500 Å in diameter) area of the low-SA biochar were enhanced by at least 1.5 times after treatment with Al-oxide, whereas the same treatment did not change the surface characteristics of the high-SA biochar due partly to its well-developed porosity. The enhanced sorption of the pesticide isoproturon to the Al-oxide-treated low-SA biochar was observed and is positively related to the increased mesopore area. The desorption hysteresis of pesticide from the low-SA biochar was strengthened because of more pesticide molecules entrapped in the expanded pores by Al-oxide. However, no obvious change of pesticide sorption to the high-SA biochar after Al-oxide treatment was observed, corresponding to its unchanged porosity. The results suggest that the influence of Al-oxide on the biochars' sorption property is dependent on their porosity. This study will provide valuable information on the use of biochars for reducing the bioavailability of pesticides.
Asunto(s)
Carbón Orgánico/química , Modelos Químicos , Plaguicidas/análisis , Contaminantes del Suelo/análisis , Adsorción , Óxido de Aluminio , Herbicidas/análisis , Plaguicidas/química , Compuestos de Fenilurea , Suelo/química , Contaminantes del Suelo/química , Madera/químicaRESUMEN
The influence of biochars on the fate of herbicides in soil depends mostly on environmental factors among which the role of soil minerals is not clear. Two wood-derived biochars produced at 400 °C (BC400) and 600 °C (BC600) were treated with alumina and montmorillonite to investigate their interaction with biochars and the influence of herbicide sorption. Both minerals exhibited a pore-expanding effect that was likely relative to the removal of authigenic organic matter away from the biochars' surface. Alumina brought more remarkable pore expansion by doubling the surface area of the BC400 biochar and the mesopore area of the BC600 biochar. Consequently, more adsorption sites were accessible for herbicide molecules, which resulted in higher sorption of herbicides (acetochlor and metribuzin) to the mineral-treated biochars than to the untreated biochars. The results are useful for understanding the change of surface and sorption properties of biochars with soil applications.
Asunto(s)
Óxido de Aluminio/química , Bentonita/química , Carbón Orgánico/química , Herbicidas/química , Adsorción , Contaminantes del Suelo/químicaRESUMEN
This work determined the influence of humic acid (HA) and fulvic acid (FA) on the interaction mechanism and microstructure of Ni(II) onto diatomite by using batch experiments, X-ray photoelectron spectroscopy (XPS), and extended X-ray absorption fine structure (EXAFS) methods. Macroscopic and spectroscopic experiments have been combined to see the evolution of the interaction mechanism and microstructure of Ni(II) in the presence of HA/FA as compared with that in the absence of HA/FA. The results indicated that the interaction of Ni(II) with diatomite presents the expected solution pH edge at 7.0, which is modified by addition of HA/FA. In the presence of HA/FA, the interaction of Ni(II) with diatomite increased below solution pH 7.0, while Ni(II) interaction decreased above solution pH 7.0. XPS analysis suggested that the enrichment of Ni(II) onto diatomite may be due to the formation of (≡SO)2Ni. EXAFS results showed that binary surface complexes and ternary surface complexes of Ni(II) can be simultaneously formed in the presence of HA/FA, whereas only binary surface complexes of Ni(II) are formed in the absence of HA/FA, which contribute to the enhanced Ni(II) uptake at low pH values. The results observed in this work are important for the evaluation of Ni(II) and related radionuclide physicochemical behavior in the natural soil and water environment.
Asunto(s)
Tierra de Diatomeas/análisis , Sustancias Húmicas/análisis , Níquel/química , Espectroscopía de Fotoelectrones/métodos , Radioisótopos/análisis , Rayos X , Absorción , Benzopiranos/análisis , Fenómenos Químicos , Concentración de Iones de Hidrógeno , Radioisótopos/química , Suelo/análisis , Suelo/química , Agua/análisis , Agua/químicaRESUMEN
Clay minerals have been extensively studied because of their strong sorption and complexation ability. In this work, diatomite was characterized by using acid-base titration. Retention of radionuclide (60)Co(II) from aqueous solution by sorption onto diatomite was investigated by using batch technique under various environmental conditions such as pH, ionic strength, humic acid (HA), fulvic acid (FA), and temperature. The results indicated that the sorption of Co(II) onto diatomite was strongly dependent on pH. At low pH value, the sorption of Co(II) was dominated by outer-sphere surface complexation and ion exchange with Na(+)/H(+) on diatomite surfaces, whereas inner-sphere surface complexation was the main sorption mechanism at high pH value. The D-R model fitted the sorption isotherms better than the Langmuir and Freundlich models. The thermodynamic parameters (ΔH(0), ΔS(0) and ΔG(0)) calculated from the temperature-dependent sorption isotherms suggested that the sorption of Co(II) was an endothermic and spontaneous process. In addition, diatomite showed higher sorption capacity than that of lots of the sorbents reported in the literatures we surveyed. From the results of Co(II) removal by diatomite, the optimum reaction conditions can be obtained for the maximum removal of Co(II) from water. It is clear that the best pH values of the system to remove Co(II) from solution by using diatomite are 7-8. Considering the low cost and effective disposal of Co(II)-contaminated wastewaters, the best condition for Co(II) removal is at room temperature and solid content of 0.5 g/L. The results might be important for assessing the potential of practical application of diatomite in Co(II) and related radionuclide pollution management.