Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.479
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(17): 3577-3592.e18, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37499659

RESUMEN

Hybrid sterility restricts the utilization of superior heterosis of indica-japonica inter-subspecific hybrids. In this study, we report the identification of RHS12, a major locus controlling male gamete sterility in indica-japonica hybrid rice. We show that RHS12 consists of two genes (iORF3/DUYAO and iORF4/JIEYAO) that confer preferential transmission of the RHS12-i type male gamete into the progeny, thereby forming a natural gene drive. DUYAO encodes a mitochondrion-targeted protein that interacts with OsCOX11 to trigger cytotoxicity and cell death, whereas JIEYAO encodes a protein that reroutes DUYAO to the autophagosome for degradation via direct physical interaction, thereby detoxifying DUYAO. Evolutionary trajectory analysis reveals that this system likely formed de novo in the AA genome Oryza clade and contributed to reproductive isolation (RI) between different lineages of rice. Our combined results provide mechanistic insights into the genetic basis of RI as well as insights for strategic designs of hybrid rice breeding.


Asunto(s)
Tecnología de Genética Dirigida , Oryza , Hibridación Genética , Oryza/genética , Fitomejoramiento/métodos , Aislamiento Reproductivo , Infertilidad Vegetal
2.
Cell ; 153(2): 413-25, 2013 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-23582329

RESUMEN

Here, we demonstrate that the fractalkine (FKN)/CX3CR1 system represents a regulatory mechanism for pancreatic islet ß cell function and insulin secretion. CX3CR1 knockout (KO) mice exhibited a marked defect in glucose and GLP1-stimulated insulin secretion, and this defect was also observed in vitro in isolated islets from CX3CR1 KO mice. In vivo administration of FKN improved glucose tolerance with an increase in insulin secretion. In vitro treatment of islets with FKN increased intracellular Ca(2+) and potentiated insulin secretion in both mouse and human islets. The KO islets exhibited reduced expression of a set of genes necessary for the fully functional, differentiated ß cell state, whereas treatment of wild-type (WT) islets with FKN led to increased expression of these genes. Lastly, expression of FKN in islets was decreased by aging and high-fat diet/obesity, suggesting that decreased FKN/CX3CR1 signaling could be a mechanism underlying ß cell dysfunction in type 2 diabetes.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Receptores de Quimiocina/metabolismo , Transducción de Señal , Adulto , Envejecimiento , Animales , Receptor 1 de Quimiocinas CX3C , Cadáver , Quimiocina CX3CL1/administración & dosificación , Quimiocina CX3CL1/metabolismo , Dieta Alta en Grasa , Expresión Génica , Glucosa/metabolismo , Humanos , Hiperglucemia/metabolismo , Secreción de Insulina , Islotes Pancreáticos/citología , Islotes Pancreáticos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Receptores de Quimiocina/genética
3.
Nature ; 601(7894): 562-567, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35082417

RESUMEN

In conventional superconductors, the phase transition into a zero-resistance and perfectly diamagnetic state is accompanied by a jump in the specific heat and the opening of a spectral gap1. In the high-transition-temperature (high-Tc) cuprates, although the transport, magnetic and thermodynamic signatures of Tc have been known since the 1980s2, the spectroscopic singularity associated with the transition remains unknown. Here we resolve this long-standing puzzle with a high-precision angle-resolved photoemission spectroscopy (ARPES) study on overdoped (Bi,Pb)2Sr2CaCu2O8+δ (Bi2212). We first probe the momentum-resolved electronic specific heat via spectroscopy and reproduce the specific heat peak at Tc, completing the missing link for a holistic description of superconductivity. Then, by studying the full momentum, energy and temperature evolution of the spectra, we reveal that this thermodynamic anomaly arises from the singular growth of in-gap spectral intensity across Tc. Furthermore, we observe that the temperature evolution of in-gap intensity is highly anisotropic in the momentum space, and the gap itself obeys both the d-wave functional form and particle-hole symmetry. These findings support the scenario that the superconducting transition is driven by phase fluctuations. They also serve as an anchor point for understanding the Fermi arc and pseudogap phenomena in underdoped cuprates.

4.
Nat Methods ; 21(4): 692-702, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38443508

RESUMEN

The serotonergic system plays important roles in both physiological and pathological processes, and is a therapeutic target for many psychiatric disorders. Although several genetically encoded GFP-based serotonin (5-HT) sensors were recently developed, their sensitivities and spectral profiles are relatively limited. To overcome these limitations, we optimized green fluorescent G-protein-coupled receptor (GPCR)-activation-based 5-HT (GRAB5-HT) sensors and developed a red fluorescent GRAB5-HT sensor. These sensors exhibit excellent cell surface trafficking and high specificity, sensitivity and spatiotemporal resolution, making them suitable for monitoring 5-HT dynamics in vivo. Besides recording subcortical 5-HT release in freely moving mice, we observed both uniform and gradient 5-HT release in the mouse dorsal cortex with mesoscopic imaging. Finally, we performed dual-color imaging and observed seizure-induced waves of 5-HT release throughout the cortex following calcium and endocannabinoid waves. In summary, these 5-HT sensors can offer valuable insights regarding the serotonergic system in both health and disease.


Asunto(s)
Receptores Acoplados a Proteínas G , Serotonina , Humanos , Ratones , Animales , Serotonina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Corteza Cerebral/metabolismo
5.
Nat Methods ; 21(4): 680-691, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38036855

RESUMEN

Dopamine (DA) plays multiple roles in a wide range of physiological and pathological processes via a large network of dopaminergic projections. To dissect the spatiotemporal dynamics of DA release in both dense and sparsely innervated brain regions, we developed a series of green and red fluorescent G-protein-coupled receptor activation-based DA (GRABDA) sensors using a variety of DA receptor subtypes. These sensors have high sensitivity, selectivity and signal-to-noise ratio with subsecond response kinetics and the ability to detect a wide range of DA concentrations. We then used these sensors in mice to measure both optogenetically evoked and behaviorally relevant DA release while measuring neurochemical signaling in the nucleus accumbens, amygdala and cortex. Using these sensors, we also detected spatially resolved heterogeneous cortical DA release in mice performing various behaviors. These next-generation GRABDA sensors provide a robust set of tools for imaging dopaminergic activity under a variety of physiological and pathological conditions.


Asunto(s)
Dopamina , Núcleo Accumbens , Ratones , Animales , Núcleo Accumbens/fisiología , Receptores Dopaminérgicos , Encéfalo , Receptores Acoplados a Proteínas G
6.
Nat Immunol ; 15(11): 1055-1063, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25282159

RESUMEN

TRPV1 is a Ca(2+)-permeable channel studied mostly as a pain receptor in sensory neurons. However, its role in other cell types is poorly understood. Here we found that TRPV1 was functionally expressed in CD4(+) T cells, where it acted as a non-store-operated Ca(2+) channel and contributed to T cell antigen receptor (TCR)-induced Ca(2+) influx, TCR signaling and T cell activation. In models of T cell-mediated colitis, TRPV1 promoted colitogenic T cell responses and intestinal inflammation. Furthermore, genetic and pharmacological inhibition of TRPV1 in human CD4(+) T cells recapitulated the phenotype of mouse Trpv1(-/-) CD4(+) T cells. Our findings suggest that inhibition of TRPV1 could represent a new therapeutic strategy for restraining proinflammatory T cell responses.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Inflamación/inmunología , Activación de Linfocitos/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Canales Catiónicos TRPV/genética , Anilidas/farmacología , Animales , Linfocitos T CD4-Positivos/citología , Calcio/metabolismo , Canales de Calcio/inmunología , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/inmunología , Capsaicina/farmacología , Células Cultivadas , Cinamatos/farmacología , Colitis/inmunología , Humanos , Interleucina-10/genética , Intestinos/inmunología , Intestinos/patología , Activación de Linfocitos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fármacos del Sistema Sensorial/farmacología , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/biosíntesis
7.
Plant Cell ; 35(8): 2871-2886, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37195873

RESUMEN

Plants have evolved sophisticated mechanisms to coordinate their growth and stress responses via integrating various phytohormone signaling pathways. However, the precise molecular mechanisms orchestrating integration of the phytohormone signaling pathways remain largely obscure. In this study, we found that the rice (Oryza sativa) short internodes1 (shi1) mutant exhibits typical auxin-deficient root development and gravitropic response, brassinosteroid (BR)-deficient plant architecture and grain size as well as enhanced abscisic acid (ABA)-mediated drought tolerance. Additionally, we found that the shi1 mutant is also hyposensitive to auxin and BR treatment but hypersensitive to ABA. Further, we showed that OsSHI1 promotes the biosynthesis of auxin and BR by activating the expression of OsYUCCAs and D11, meanwhile dampens ABA signaling by inducing the expression of OsNAC2, which encodes a repressor of ABA signaling. Furthermore, we demonstrated that 3 classes of transcription factors, AUXIN RESPONSE FACTOR 19 (OsARF19), LEAF AND TILLER ANGLE INCREASED CONTROLLER (LIC), and OsZIP26 and OsZIP86, directly bind to the promoter of OsSHI1 and regulate its expression in response to auxin, BR, and ABA, respectively. Collectively, our results unravel an OsSHI1-centered transcriptional regulatory hub that orchestrates the integration and self-feedback regulation of multiple phytohormone signaling pathways to coordinate plant growth and stress adaptation.


Asunto(s)
Oryza , Reguladores del Crecimiento de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Abscísico/metabolismo , Ácidos Indolacéticos/metabolismo , Brasinoesteroides/metabolismo , Hormonas , Crecimiento y Desarrollo , Regulación de la Expresión Génica de las Plantas
8.
Proc Natl Acad Sci U S A ; 120(44): e2308828120, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37871204

RESUMEN

Here, a molecular-design and carbon dot-confinement coupling strategy through the pyrolysis of bimetallic complex of diethylenetriamine pentaacetic acid under low-temperature is proposed as a universal approach to dual-metal-atom sites in carbon dots (DMASs-CDs). CDs as the "carbon islands" could block the migration of DMASs across "islands" to achieve dynamic stability. More than twenty DMASs-CDs with specific compositions of DMASs (pairwise combinations among Fe, Co, Ni, Mn, Zn, Cu, and Mo) have been synthesized successfully. Thereafter, high intrinsic activity is observed for the probe reaction of urea oxidation on NiMn-CDs. In situ and ex situ spectroscopic characterization and first-principle calculations unveil that the synergistic effect in NiMn-DMASs could stretch the urea molecule and weaken the N-H bond, endowing NiMn-CDs with a low energy barrier for urea dehydrogenation. Moreover, DMASs-CDs for various target electrochemical reactions, including but not limited to urea oxidation, are realized by optimizing the specific DMAS combination in CDs.

9.
Proc Natl Acad Sci U S A ; 120(14): e2216231120, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36976764

RESUMEN

Histamine is a conserved neuromodulator in mammalian brains and critically involved in many physiological functions. Understanding the precise structure of the histaminergic network is the cornerstone in elucidating its function. Herein, using histidine decarboxylase (HDC)-CreERT2 mice and genetic labeling strategies, we reconstructed a whole-brain three dimensional (3D) structure of histaminergic neurons and their outputs at 0.32 × 0.32 × 2 µm3 pixel resolution with a cutting-edge fluorescence microoptical sectioning tomography system. We quantified the fluorescence density of all brain areas and found that histaminergic fiber density varied significantly among brain regions. The density of histaminergic fiber was positively correlated with the amount of histamine release induced by optogenetic stimulation or physiological aversive stimulation. Lastly, we reconstructed a fine morphological structure of 60 histaminergic neurons via sparse labeling and uncovered the largely heterogeneous projection pattern of individual histaminergic neurons. Collectively, this study reveals an unprecedented whole-brain quantitative analysis of histaminergic projections at the mesoscopic level, providing a foundation for future functional histaminergic study.


Asunto(s)
Encéfalo , Histamina , Ratones , Animales , Encéfalo/metabolismo , Neuronas/metabolismo , Mapeo Encefálico , Histidina Descarboxilasa/genética , Histidina Descarboxilasa/metabolismo , Mamíferos/metabolismo
10.
Plant Physiol ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888990

RESUMEN

Grain size is one of the most important traits determining crop yield. However, the mechanism controlling grain size remains unclear. Here, we confirmed the E3 ligase activity of DECREASED GRAIN SIZE 1 (DGS1) in positive regulation of grain size in rice (Oryza sativa) suggested in a previous study. Rice G-protein subunit gamma 2 (RGG2), which negatively regulates grain size, was identified as an interacting protein of DGS1. Biochemical analysis suggested that DGS1 specifically interacts with canonical Gγ subunits (rice G-protein subunit gamma 1 [RGG1] and rice G-protein subunit gamma 2 [RGG2]) rather than non-canonical Gγ subunits (DENSE AND ERECT PANICLE 1 [DEP1], rice G-protein gamma subunit type C 2 [GCC2], GRAIN SIZE 3 [GS3]). We also identified the necessary domains for interaction between DGS1 and RGG2. As an E3 ligase, DGS1 ubiquitinated and degraded RGG2 via a proteasome pathway in several experiments. DGS1 also ubiquitinated RGG2 by its K140, K145 and S147 residues. Thus, this work identified a substrate of the E3 ligase DGS1 and elucidated the post transcriptional regulatory mechanism of the G-protein signalling pathway in the control of grain size.

11.
Chem Rev ; 123(21): 12254-12311, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37874548

RESUMEN

Protein misfolding and aggregation, a key contributor to the progression of numerous neurodegenerative diseases, results in functional deficiencies and the creation of harmful intermediates. Detailed visualization of this misfolding process is of paramount importance for improving our understanding of disease mechanisms and for the development of potential therapeutic strategies. While in vitro studies using purified proteins have been instrumental in delivering significant insights into protein misfolding, the behavior of these proteins in the complex milieu of living cells often diverges significantly from such simplified environments. Biomedical imaging performed in cell provides cellular-level information with high physiological and pathological relevance, often surpassing the depth of information attainable through in vitro methods. This review highlights a variety of methodologies used to scrutinize protein misfolding within biological systems. This includes optical-based methods, strategies leaning on mass spectrometry, in-cell nuclear magnetic resonance, and cryo-electron microscopy. Recent advancements in these techniques have notably deepened our understanding of protein misfolding processes and the features of the resulting misfolded species within living cells. The progression in these fields promises to catalyze further breakthroughs in our comprehension of neurodegenerative disease mechanisms and potential therapeutic interventions.


Asunto(s)
Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/diagnóstico por imagen , Enfermedades Neurodegenerativas/metabolismo , Pliegue de Proteína , Microscopía por Crioelectrón , Proteínas/química
12.
Proc Natl Acad Sci U S A ; 119(40): e2205757119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161927

RESUMEN

The cleavage of intracellular domains of receptor-like kinases (RLKs) has an important functional role in the transduction of signals from the cell surface to the nucleus in many organisms. However, the peptidases that catalyze protein cleavage during signal transduction remain poorly understood despite their crucial roles in diverse signaling processes. Here, we report in the flowering plant Arabidopsis thaliana that members of the DA1 family of ubiquitin-regulated Zn metallopeptidases cleave the cytoplasmic kinase domain of transmembrane kinase 1 (TMK1), releasing it for nuclear localization where it represses auxin-responsive cell growth during apical hook formation by phosphorylation and stabilization of the transcriptional repressors IAA32 and IAA34. Mutations in DA1 family members exhibited reduced apical hook formation, and DA1 family-mediated cleavage of TMK1 was promoted by auxin treatment. Expression of the DA1 family-generated intracellular kinase domain of TMK1 by an auxin-responsive promoter fully restored apical hook formation in a tmk1 mutant, establishing the function of DA1 family peptidase activities in TMK1-mediated differential cell growth and apical hook formation. DA1 family peptidase activity therefore modulates TMK1 kinase activity between a membrane location where it stimulates acid cell growth and initiates an auxin-dependent kinase cascade controlling cell proliferation in lateral roots and a nuclear localization where it represses auxin-mediated gene expression and growth.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Núcleo Celular , Proteínas con Dominio LIM , Péptido Hidrolasas , Proteínas Serina-Treonina Quinasas , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/enzimología , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/metabolismo , Mutación , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Ubiquitinas/metabolismo
13.
Nano Lett ; 24(7): 2131-2141, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38227823

RESUMEN

Ischemia/reperfusion (IR)-induced acute lung injury (ALI) has a high mortality rate. Reactive oxygen species (ROS) play a crucial role in causing cellular damage and death in IR-induced ALI. In this work, we developed a biomimetic lung-targeting nanoparticle (PC@MB) as an antioxidative lung protector for treating IR-induced ALI. PC@MBs showed excellent ROS scavenging and Nrf2 activation properties, along with a lung-targeting function through autologous cell membrane coating. The PC@MBs exhibited an impressive antioxidative and pulmonary protective role via redox homeostasis recovery through Nrf2 and heme oxygenase-1 activation. PC@MBs could maintain cell viability by effectively scavenging the intracellular ROS and restoring the redox equilibrium in the lesion. In the IR mouse model, the PC@MBs preferentially accumulated in the lung and distinctly repaired the pneumonic damage. Our strategy has the potential to offer a promising therapeutic paradigm for treating IR-induced ALI through the incorporation of different therapeutic mechanisms.


Asunto(s)
Lesión Pulmonar Aguda , Daño por Reperfusión , Ratones , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/farmacología , Factor 2 Relacionado con NF-E2/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Biomimética , Lesión Pulmonar Aguda/tratamiento farmacológico , Pulmón/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Isquemia , Reperfusión/efectos adversos , Estrés Oxidativo
14.
Nano Lett ; 24(25): 7741-7747, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38870320

RESUMEN

The existence of fractionally quantized topological corner charge serves as a key indicator for two-dimensional (2D) second-order topological insulators (SOTIs), yet it has not been experimentally observed in realistic materials. Here, based on effective model analysis and symmetry arguments, we propose a strategy for achieving SOTI phases with in-gap corner states in 2D systems with antiferromagnetic (AFM) order. We discover that the band topology originates from the interplay between intrinsic spin-orbital coupling and interlayer AFM exchange interactions. Using first-principles calculations, we show that the 2D AFM SOTI phase can be realized in (MnBi2Te4)(Bi2Te3)m films. Moreover, we demonstrate that the SOTI states are linked to rotation topological invariants under 3-fold rotation symmetry C3, resulting in fractionally quantized corner charge, i.e., n3|e| (mod e). Due to the great achievements in (MnBi2Te4)(Bi2Te3)m systems, our results providing reliable material candidates for experimentally accessible AFM SOTIs should draw intense attention.

15.
Genes Dev ; 31(2): 197-208, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-28167503

RESUMEN

The characteristic shapes and sizes of organs are established by cell proliferation patterns and final cell sizes, but the underlying molecular mechanisms coordinating these are poorly understood. Here we characterize a ubiquitin-activated peptidase called DA1 that limits the duration of cell proliferation during organ growth in Arabidopsis thaliana The peptidase is activated by two RING E3 ligases, Big Brother (BB) and DA2, which are subsequently cleaved by the activated peptidase and destabilized. In the case of BB, cleavage leads to destabilization by the RING E3 ligase PROTEOLYSIS 1 (PRT1) of the N-end rule pathway. DA1 peptidase activity also cleaves the deubiquitylase UBP15, which promotes cell proliferation, and the transcription factors TEOSINTE BRANCED 1/CYCLOIDEA/PCF 15 (TCP15) and TCP22, which promote cell proliferation and repress endoreduplication. We propose that DA1 peptidase activity regulates the duration of cell proliferation and the transition to endoreduplication and differentiation during organ formation in plants by coordinating the destabilization of regulatory proteins.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Proteínas con Dominio LIM/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proliferación Celular , Activación Enzimática , Proteínas con Dominio LIM/genética , Estabilidad Proteica
16.
J Cell Mol Med ; 28(16): e70017, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39159071

RESUMEN

Acute myeloid leukaemia (AML) is a common and highly aggressive haematological malignancy in adults. Senescence-associated secretory phenotype (SASP) plays important roles in tumorigenesis and progression of tumour. However, the prognostic value of SASP in patients with AML has not been clarified. The present study aims to explore the prognostic value of SASP and develop a prognostic risk signature for AML. The RNA-sequencing data was collected from the TCGA, GTEx and TARGET databases. Subsequently, differentially expressed gene analysis, univariate Cox regression and LASSO regression were applied to identified prognostic SASP-related genes and construct a prognostic risk-scoring model. The risk score of each patient were calculated and patients were divided into high- or low-risk groups by the median risk score. This novel prognostic signature included 11 genes: G6PD, CDK4, RPS6KA1, UBC, H2BC12, KIR2DL4, HSF1, IFIT3, PIM1, RUNX3 and TRIM21. The patients with AML in the high-risk group had shorter OS, demonstrating that the risk score acted as a prognostic predictor, which was validated in the TAGET-AML dataset. Univariate and multivariate analysis revealed the risk score was an independent prognostic factor in patients with AML. Furthermore, the present study revealed that the risk score was associated with immune landscape, immune checkpoint gene expression and chemotherapeutic efficacy. In the present study, we constructed and validated a unique SASP-related prognostic model to assess therapeutic effect and prognosis in patients with AML, which might contribute to understanding the role of SASP in AML and guiding the treatment for AML.


Asunto(s)
Biomarcadores de Tumor , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/mortalidad , Pronóstico , Femenino , Biomarcadores de Tumor/genética , Masculino , Perfilación de la Expresión Génica , Persona de Mediana Edad , Regulación Leucémica de la Expresión Génica , Transcriptoma/genética , Adulto , Factores de Riesgo
17.
J Biol Chem ; 299(8): 105068, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37468102

RESUMEN

Although it was described previously for estrogen (E2) regulation of intestinal epithelial Cl- and HCO3- secretion in sex difference, almost nothing is known about the roles of estrogen receptor (ER) subtypes in regulating E2-modulated epithelial ion transports and epithelial restitution. Here, we aimed to investigate ERα and ERß subtypes in the regulation of E2-modulated colonic epithelial HCO3- and Cl- secretion and epithelial restitution. Through physiological and biochemical studies, in combination of genetic knockdown, we showed that ERα attenuated female colonic Cl- secretion but promoted Ca2+-dependent HCO3- secretion via store-operated calcium entry (SOCE) mechanism in mice. However, ERß attenuated HCO3- secretion by inhibiting Ca2+via the SOCE and inhibiting cAMP via protein kinases. Moreover, ERα but not ERß promoted epithelial cell restitution via SOCE/Ca2+ signaling. ERα also enhanced cyclin D1, proliferating cell nuclear antigen, and ß-catenin expression in normal human colonic epithelial cells. All ERα-mediated biological effects could be attenuated by its selective antagonist and genetic knockdown. Finally, both ERα and ERß were expressed in human colonic epithelial cells and mouse colonic tissues. We therefore conclude that E2 modulates complex colonic epithelial HCO3- and Cl- secretion via ER subtype-dependent mechanisms and that ERα is specifically responsible for colonic epithelial regeneration. This study provides novel insights into the molecular mechanisms of how ERα and ERß subtypes orchestrate functional homeostasis of normal colonic epithelial cells.


Asunto(s)
Colon , Células Epiteliales , Receptor alfa de Estrógeno , Transporte Iónico , Receptores de Estrógenos , Animales , Femenino , Humanos , Ratones , Células Epiteliales/metabolismo , Estradiol/metabolismo , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Estrógenos/metabolismo , Receptores de Estrógenos/metabolismo , Colon/citología
18.
J Am Chem Soc ; 146(33): 22959-22969, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39106438

RESUMEN

The vinylene-linked covalent organic frameworks (viCOFs) have been generally synthesized in the presence of homogeneous catalysts such as KOH or trifluoroacetic acid. However, highly ordered viCOFs cannot always be obtained due to the uncommitted growth of viCOF layers in the homogeneous system with ubiquitous catalysts. Here, we propose a scalable protocol to restrict the growth of viCOFs along the two-dimensional (2D) plane by introducing a heterogeneous catalyst, polyoxometalates (POMs). With the unique Brønsted alkalinity and catalytic surface, POMs induce the growth of 2D viCOF layers along the surface of the catalytic substrate and restrain the generation of out-of-plane branches. Based on this protocol, six typical 2D viCOFs with high crystallinity and porosity were synthesized within a shorter reaction time as compared with the reported works using the common homogeneous catalysts for viCOF synthesis. On the basis of the density functional theory calculations and experimental results, a bottom intercalation growth pattern of viCOFs was revealed during the heterogeneous reaction. The unique growth pattern greatly promotes the orderly assembly of monomers, thus shortening the reaction time and improving the crystallinity of viCOFs. Furthermore, this heterogeneous catalysis strategy is suitable for the gram-scale preparation of 2D viCOFs. These results provide a novel avenue for the synthesis of high-quality viCOFs and may bring new insights into the synthetic methodology of COFs.

19.
Neurobiol Dis ; 193: 106442, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38382884

RESUMEN

Current research efforts on neurodegenerative diseases are focused on identifying novel and reliable biomarkers for early diagnosis and insight into disease progression. Salivary analysis is gaining increasing interest as a promising source of biomarkers and matrices for measuring neurodegenerative diseases. Saliva collection offers multiple advantages over the currently detected biofluids as it is easily accessible, non-invasive, and repeatable, allowing early diagnosis and timely treatment of the diseases. Here, we review the existing findings on salivary biomarkers and address the potential value in diagnosing neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease and Amyotrophic lateral sclerosis. Based on the available research, ß-amyloid, tau protein, α-synuclein, DJ-1, Huntington protein in saliva profiles display reliability and validity as the biomarkers of neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Huntington , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedades Neurodegenerativas/diagnóstico , Reproducibilidad de los Resultados , Enfermedad de Parkinson/metabolismo , Enfermedad de Huntington/diagnóstico , Biomarcadores
20.
Cancer ; 130(S8): 1424-1434, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38217532

RESUMEN

BACKGROUND: Immunohistochemistry (IHC) is an essential technique in surgical and clinical pathology for detecting diagnostic, prognostic, and predictive biomarkers for personalized cancer therapy. However, the lack of standardization and reference controls results in poor reproducibility, and a reliable tool for IHC quantification is urgently required. The objective of this study was to describe a novel approach in which H3F3B (histone H3, family 3B) can be used as an internal reference standard to quantify protein expression levels using IHC. METHODS: The authors enrolled 89 patients who had human epidermal growth factor receptor 2 (HER2)-positive breast cancer (BC). They used a novel IHC-based assay to measure protein expression using H3F3B as the internal reference standard. H3F3B was uniformly expressed at the protein level in all tumor regions in cancer tissues. HER2 expression levels were measured with the H-score using HALO software. RESULTS: Kaplan-Meier analysis indicated that, among patients who had HER2-positive BC in The Cancer Genome Atlas data set and the authors' data set, the subgroup with low HER2 expression had a significantly better prognosis than the subgroup with high HER2 expression. Furthermore, the authors observed that HER2 expression levels were precisely evaluated using the proposed method, which can classify patients who are at higher risk of HER2-positive BC to receive trastuzumab-based adjuvant therapy. Dual-color IHC with H3F3B is an excellent tool for internal and external quality control of HER2 expression assays. CONCLUSIONS: The proposed IHC-based quantification method accurately assesses HER2 expression levels and provides insights for predicting clinical prognosis in patients with HER2-positive BC who receive trastuzumab-based adjuvant therapy.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Histonas , Inmunohistoquímica , Reproducibilidad de los Resultados , Receptor ErbB-2/genética , Trastuzumab/uso terapéutico , Estándares de Referencia , Biomarcadores de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA