RESUMEN
Alzheimer's disease (AD) is caused by a complex interaction between genetic and environmental factors. However, how the role of peripheral organ changes in response to environmental stimuli during aging in AD pathogenesis remains unknown. Hepatic soluble epoxide hydrolase (sEH) activity increases with age. Hepatic sEH manipulation bidirectionally attenuates brain amyloid-ß (Aß) burden, tauopathy, and cognitive deficits in AD mouse models. Moreover, hepatic sEH manipulation bidirectionally regulates the plasma level of 14,15-epoxyeicosatrienoic acid (-EET), which rapidly crosses the blood-brain barrier and modulates brain Aß metabolism through multiple pathways. A balance between the brain levels of 14,15-EET and Aß is essential for preventing Aß deposition. In AD models, 14,15-EET infusion mimicked the neuroprotective effects of hepatic sEH ablation at biological and behavioral levels. These results highlight the liver's key role in AD pathology, and targeting the liver-brain axis in response to environmental stimuli may constitute a promising therapeutic approach for AD prevention.
Asunto(s)
Enfermedad de Alzheimer , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Epóxido Hidrolasas/genética , Epóxido Hidrolasas/metabolismo , Hígado/metabolismo , Hígado/patologíaRESUMEN
Major depression is a serious global health concern; however, the pathophysiology underlying this condition remains unclear. While numerous studies have focused on brain-specific mechanisms, few have evaluated the role of peripheral organs in depression. Here, we show that the liver activates an intrinsic metabolic pathway that can modulate depressive-like behavior. We find that chronic stress specifically increases the protein levels of monomeric and oligomeric soluble epoxide hydrolase (sEH), a key enzyme in epoxyeicosatrienoic acid (EET) signaling, in the liver. Hepatic deletion of Ephx2 (which encodes sEH) results in antidepressant-like effects, while the hepatic overexpression of sEH induces depressive phenotypes. The activity of sEH in hepatocytes modulates the plasma levels of 14,15-EET, which then interacts with astrocytes in the medial prefrontal cortex to mediate the effects of hepatic Ephx2 deletion. These results suggest that targeting mechanisms underlying the hepatic response to stress would increase our therapeutic options for the treatment of depression.
Asunto(s)
Depresión/metabolismo , Epóxido Hidrolasas/metabolismo , Hígado/metabolismo , Estrés Fisiológico/fisiología , Adolescente , Adulto , Animales , Astrocitos/metabolismo , Células Cultivadas , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal/fisiología , Adulto JovenRESUMEN
Emerging life threatening pathogens such as severe acute aspiratory syndrome-coronavirus (SARS-CoV), avian-origin influenzas H7N9, and the Middle East respiratory syndrome coronavirus (MERS-CoV) have caused a high case-fatality rate and psychological effects on society and the economy. Therefore, a simple, rapid, and safe method to investigate a therapeutic approach against these pathogens is required. In this study, a simple, quick, and safe cell adhesion inhibition assay was developed to determine the potential cellular binding site on the SARS-CoV spike protein. Various synthetic peptides covering the potential binding site helped to minimize further the binding motif to 10-25 residues. Following analyses, 2 peptides spanning the 436-445 and 437-461 amino acids of the spike protein were identified as peptide inhibitor or peptide vaccine candidates against SARS-CoV.