Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35131937

RESUMEN

Land use is central to addressing sustainability issues, including biodiversity conservation, climate change, food security, poverty alleviation, and sustainable energy. In this paper, we synthesize knowledge accumulated in land system science, the integrated study of terrestrial social-ecological systems, into 10 hard truths that have strong, general, empirical support. These facts help to explain the challenges of achieving sustainability in land use and thus also point toward solutions. The 10 facts are as follows: 1) Meanings and values of land are socially constructed and contested; 2) land systems exhibit complex behaviors with abrupt, hard-to-predict changes; 3) irreversible changes and path dependence are common features of land systems; 4) some land uses have a small footprint but very large impacts; 5) drivers and impacts of land-use change are globally interconnected and spill over to distant locations; 6) humanity lives on a used planet where all land provides benefits to societies; 7) land-use change usually entails trade-offs between different benefits-"win-wins" are thus rare; 8) land tenure and land-use claims are often unclear, overlapping, and contested; 9) the benefits and burdens from land are unequally distributed; and 10) land users have multiple, sometimes conflicting, ideas of what social and environmental justice entails. The facts have implications for governance, but do not provide fixed answers. Instead they constitute a set of core principles which can guide scientists, policy makers, and practitioners toward meeting sustainability challenges in land use.


Asunto(s)
Agricultura , Conservación de los Recursos Naturales/métodos , Ecosistema , Humanos , Energía Renovable , Cambio Social
2.
Bioscience ; 73(2): 134-148, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36896142

RESUMEN

Ecosystem restoration is an important means to address global sustainability challenges. However, scientific and policy discourse often overlooks the social processes that influence the equity and effectiveness of restoration interventions. In the present article, we outline how social processes that are critical to restoration equity and effectiveness can be better incorporated in restoration science and policy. Drawing from existing case studies, we show how projects that align with local people's preferences and are implemented through inclusive governance are more likely to lead to improved social, ecological, and environmental outcomes. To underscore the importance of social considerations in restoration, we overlay existing global restoration priority maps, population, and the Human Development Index (HDI) to show that approximately 1.4 billion people, disproportionately belonging to groups with low HDI, live in areas identified by previous studies as being of high restoration priority. We conclude with five action points for science and policy to promote equity-centered restoration.

3.
Proc Natl Acad Sci U S A ; 115(15): 3810-3815, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29581291

RESUMEN

The contiguous United States (CONUS), especially the West, faces challenges of increasing water stress and uncertain impacts of climate change. The historical information of surface water body distribution, variation, and multidecadal trends documented in remote-sensing images can aid in water-resource planning and management, yet is not well explored. Here, we detected open-surface water bodies in all Landsat 5, 7, and 8 images (∼370,000 images, >200 TB) of the CONUS and generated 30-meter annual water body frequency maps for 1984-2016. We analyzed the interannual variations and trends of year-long water body area, examined the impacts of climatic and anthropogenic drivers on water body area dynamics, and explored the relationships between water body area and land water storage (LWS). Generally, the western half of the United States is prone to water stress, with small water body area and large interannual variability. During 1984-2016, water-poor regions of the Southwest and Northwest had decreasing trends in water body area, while water-rich regions of the Southeast and far north Great Plains had increasing trends. These divergent trends, mainly driven by climate, enlarged water-resource gaps and are likely to continue according to climate projections. Water body area change is a good indicator of LWS dynamics in 58% of the CONUS. Following the 2012 prolonged drought, LWS in California and the southern Great Plains had a larger decrease than surface water body area, likely caused by massive groundwater withdrawals. Our findings provide valuable information for surface water-resource planning and management across the CONUS.

4.
Remote Sens Environ ; 2382020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32863440

RESUMEN

Tidal flats (non-vegetated area), along with coastal vegetation area, constitute the coastal wetlands (intertidal zone) between high and low water lines, and play an important role in wildlife, biodiversity and biogeochemical cycles. However, accurate annual maps of coastal tidal flats over the last few decades are unavailable and their spatio-temporal changes in China are unknown. In this study, we analyzed all the available Landsat TM/ETM+/OLI imagery (~ 44,528 images) using the Google Earth Engine (GEE) cloud computing platform and a robust decision tree algorithm to generate annual frequency maps of open surface water body and vegetation to produce annual maps of coastal tidal flats in eastern China from 1986 to 2016 at 30-m spatial resolution. The resulting map of coastal tidal flats in 2016 was evaluated using very high-resolution images available in Google Earth. The total area of coastal tidal flats in China in 2016 was about 731,170 ha, mostly distributed in the provinces around Yellow River Delta and Pearl River Delta. The interannual dynamics of coastal tidal flats area in China over the last three decades can be divided into three periods: a stable period during 1986-1992, an increasing period during 1993-2001 and a decreasing period during 2002-2016. The resulting annual coastal tidal flats maps could be used to support sustainable coastal zone management policies that preserve coastal ecosystem services and biodiversity in China.

5.
ISPRS J Photogramm Remote Sens ; 163: 312-326, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32405155

RESUMEN

Coastal wetlands, composed of coastal vegetation and non-vegetated tidal flats, play critical roles in biodiversity conservation, food production, and the global economy. Coastal wetlands in China are changing quickly due to land reclamation from sea, aquaculture, industrialization, and urbanization. However, accurate and updated maps of coastal wetlands (including vegetation and tidal flats) in China are unavailable, and the detailed spatial distribution of coastal wetlands are unknown. Here, we developed a new pixel- and phenology-based algorithm to identify and map coastal wetlands in China for 2018 using time series Landsat imagery (2,798 ETM+/OLI images) and the Google Earth Engine (GEE). The resultant map had a very high overall accuracy (98%). There were 7,474.6 km2 of coastal wetlands in China in 2018, which included 5,379.8 km2 of tidal flats, 1,856.4 km2 of deciduous wetlands, and 238.3 km2 of evergreen wetlands. Jiangsu Province had the largest area of coastal wetlands in China, followed by Shandong, Fujian, and Zhejiang Provinces. Our study demonstrates the high potential of time series Landsat images, pixel- and phenology-based algorithm, and GEE for mapping coastal wetlands at large scales. The resultant coastal wetland maps at 30-m spatial resolution serve as the most current dataset for sustainable management, ecological assessments, and conservation of coastal wetlands in China.

6.
Conserv Biol ; 33(5): 1066-1075, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30677172

RESUMEN

Nature reserves (NR) are the cornerstone of biodiversity conservation. Over the past 60 years, the rapid expansion of NRs in China, one of the world's megadiverse countries, has played a critical role in slowing biodiversity loss. We examined the changes in the number and area of China's NRs from 1956 to 2014 and analyzed the effect of economic development on the expansion of China's NRs from 2005 to 2014 with linear models. Despite a continuing increase in the number of NRs, the total area of China's NRs decreased by 3% from 2007 to 2014. This loss resulted from downsizing and degazettement of existing NRs and a slowdown in the establishment of new ones. Nature reserves in regions with rapid economic development exhibited a greater decrease in area, suggesting that downsizing and degazettement of NRs are closely related to the intensifying competition between economic growth and conservation. For example, boundary adjustments to national NRs, the most strictly protected NRs, along the coast of China's Yellow Sea, a global biodiversity hotspot with a fast-growing economy, resulted in the loss of one-third of the total area. One of the most important ecosystems in these NRs, tidal wetlands, decreased by 27.8% because of boundary adjustments and by 25.2% because of land reclamation. Our results suggest conservation achievement, in terms of both area and quality, are declining at least in some regions in the Chinese NR estate. Although the designation of protected areas that are primarily managed for sustainable use has increased rapidly in recent years in China, we propose that NRs with biodiversity conservation as their main function should not be replaced or weakened.


Cambios en la Superficie y el Número de Reservas Naturales en China Resumen Las reservas naturales (RN) son la piedra angular de la conservación de la biodiversidad. Durante los últimos 60 años, la rápida expansión de las RN en China, uno de los países megadiversos, ha jugado un papel crítico en la reducción de la pérdida de biodiversidad. Examinamos los cambios en el número y superficie de las RN en China de 1956 a 2014 y analizamos el efecto del desarrollo económico en la expansión de las RN en China de 2005 a 2014 mediante modelos lineales. A pesar del incremento continuo en el número de RN, la superficie total de RN en China decreció en 3% de 2007 a 2014. Esta pérdida resultó de la reducción y cambio de registro de RN existentes y una desaceleración en el establecimiento de RN nuevas. Las reservas naturales en regiones con desarrollo económico rápido presentaron una mayor disminución en la superficie, lo que sugiere que la reducción y cambio de registro de RN están relacionados cercanamente con la intensificación de la competencia entre crecimiento económico y conservación. Por ejemplo, ajustes en los límites de RN nacionales, las RN más estrictamente protegidas, a lo largo de la costa del Mar Amarillo, un sitio de importancia para la biodiversidad global con una economía en rápido crecimiento, resultó en la pérdida de un tercio de la superficie total. Uno de los ecosistemas más importantes en estas RN, humedales mareales, decreció en 27.8% debido a ajustes en los límites y en 25.2% debido a la reclamación de tierras. Nuestros resultados sugieren que los logros de conservación, en términos tanto de área como de calidad, están declinando en las RN de China. Aunque la designación de áreas protegidas administradas primariamente para un uso sustentable ha incrementado rápidamente en años recientes en China, proponemos que las RN cuya principal función es la conservación de la biodiversidad no deben ser reemplazadas o debilitadas.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Biodiversidad , China , Humedales
7.
Ecol Appl ; 28(2): 442-456, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29205627

RESUMEN

Grassland degradation and desertification is a complex process, including both state conversion (e.g., grasslands to deserts) and gradual within-state change (e.g., greenness dynamics). Existing studies hardly separated the two components and analyzed it as a whole based on time series vegetation index data, which cannot provide a clear and comprehensive picture for grassland degradation and desertification. Here we propose an integrated assessment strategy, by considering both state conversion and within-state change of grasslands, to investigate grassland degradation and desertification process in Central Asia. First, annual maps of grasslands and sparsely vegetated land were generated to track the state conversions between them. The results showed increasing grasslands were converted to sparsely vegetated lands from 2000 to 2014, with the desertification region concentrating in the latitude range of 43-48° N. A frequency analysis of grassland vs. sparsely vegetated land classification in the last 15 yr allowed a recognition of persistent desert zone (PDZ), persistent grassland zone (PGZ), and transitional zone (TZ). The TZ was identified in southern Kazakhstan as one hotspot that was unstable and vulnerable to desertification. Furthermore, the trend analysis of Enhanced Vegetation Index during thermal growing season (EVITGS ) was investigated in individual zones using linear regression and Mann-Kendall approaches. An overall degradation across the area was found; moreover, the second desertification hotspot was identified in northern Kazakhstan with significant decreasing in EVITGS , which was located in PGZ. Finally, attribution analyses of grassland degradation and desertification were conducted by considering precipitation, temperature, and three different drought indices. We found persistent droughts were the main factor for grassland degradation and desertification in Central Asia. Considering both state conversion and gradual within-state change processes, this study provided reference information for identification of desertification hotspots to support further grassland degradation and desertification treatment, and the method could be useful to be extended to other regions.


Asunto(s)
Conservación de los Recursos Naturales/tendencias , Pradera , Asia Central , Sequías
8.
Proc Natl Acad Sci U S A ; 112(9): 2788-93, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25730847

RESUMEN

Terrestrial gross primary productivity (GPP) varies greatly over time and space. A better understanding of this variability is necessary for more accurate predictions of the future climate-carbon cycle feedback. Recent studies have suggested that variability in GPP is driven by a broad range of biotic and abiotic factors operating mainly through changes in vegetation phenology and physiological processes. However, it is still unclear how plant phenology and physiology can be integrated to explain the spatiotemporal variability of terrestrial GPP. Based on analyses of eddy-covariance and satellite-derived data, we decomposed annual terrestrial GPP into the length of the CO2 uptake period (CUP) and the seasonal maximal capacity of CO2 uptake (GPPmax). The product of CUP and GPPmax explained >90% of the temporal GPP variability in most areas of North America during 2000-2010 and the spatial GPP variation among globally distributed eddy flux tower sites. It also explained GPP response to the European heatwave in 2003 (r(2) = 0.90) and GPP recovery after a fire disturbance in South Dakota (r(2) = 0.88). Additional analysis of the eddy-covariance flux data shows that the interbiome variation in annual GPP is better explained by that in GPPmax than CUP. These findings indicate that terrestrial GPP is jointly controlled by ecosystem-level plant phenology and photosynthetic capacity, and greater understanding of GPPmax and CUP responses to environmental and biological variations will, thus, improve predictions of GPP over time and space.


Asunto(s)
Ecosistema , Modelos Biológicos , Fenómenos Fisiológicos de las Plantas , Plantas , South Dakota
9.
Remote Sens Environ ; 185: 142-154, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28025586

RESUMEN

Area and spatial distribution information of paddy rice are important for understanding of food security, water use, greenhouse gas emission, and disease transmission. Due to climatic warming and increasing food demand, paddy rice has been expanding rapidly in high latitude areas in the last decade, particularly in northeastern (NE) Asia. Current knowledge about paddy rice fields in these cold regions is limited. The phenology- and pixel-based paddy rice mapping (PPPM) algorithm, which identifies the flooding signals in the rice transplanting phase, has been effectively applied in tropical areas, but has not been tested at large scale of cold regions yet. Despite the effects from more snow/ice, paddy rice mapping in high latitude areas is assumed to be more encouraging due to less clouds, lower cropping intensity, and more observations from Landsat sidelaps. Moreover, the enhanced temporal and geographic coverage from Landsat 8 provides an opportunity to acquire phenology information and map paddy rice. This study evaluated the potential of Landsat 8 images on annual paddy rice mapping in NE Asia which was dominated by single cropping system, including Japan, North Korea, South Korea, and NE China. The cloud computing approach was used to process all the available Landsat 8 imagery in 2014 (143 path/rows, ~3290 scenes) with the Google Earth Engine (GEE) platform. The results indicated that the Landsat 8, GEE, and improved PPPM algorithm can effectively support the yearly mapping of paddy rice in NE Asia. The resultant paddy rice map has a high accuracy with the producer (user) accuracy of 73% (92%), based on the validation using very high resolution images and intensive field photos. Geographic characteristics of paddy rice distribution were analyzed from aspects of country, elevation, latitude, and climate. The resultant 30-m paddy rice map is expected to provide unprecedented details about the area, spatial distribution, and landscape pattern of paddy rice fields in NE Asia, which will contribute to food security assessment, water resource management, estimation of greenhouse gas emissions, and disease control.

10.
Proc Natl Acad Sci U S A ; 110(11): 4309-14, 2013 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-23440201

RESUMEN

As the Earth's third pole, the Tibetan Plateau has experienced a pronounced warming in the past decades. Recent studies reported that the start of the vegetation growing season (SOS) in the Plateau showed an advancing trend from 1982 to the late 1990s and a delay from the late 1990s to 2006. However, the findings regarding the SOS delay in the later period have been questioned, and the reasons causing the delay remain unknown. Here we explored the alpine vegetation SOS in the Plateau from 1982 to 2011 by integrating three long-term time-series datasets of Normalized Difference Vegetation Index (NDVI): Global Inventory Modeling and Mapping Studies (GIMMS, 1982-2006), SPOT VEGETATION (SPOT-VGT, 1998-2011), and Moderate Resolution Imaging Spectroradiometer (MODIS, 2000-2011). We found GIMMS NDVI in 2001-2006 differed substantially from SPOT-VGT and MODIS NDVIs and may have severe data quality issues in most parts of the western Plateau. By merging GIMMS-based SOSs from 1982 to 2000 with SPOT-VGT-based SOSs from 2001 to 2011 we found the alpine vegetation SOS in the Plateau experienced a continuous advancing trend at a rate of ∼1.04 d·y(-1) from 1982 to 2011, which was consistent with observed warming in springs and winters. The satellite-derived SOSs were proven to be reliable with observed phenology data at 18 sites from 2003 to 2011; however, comparison of their trends was inconclusive due to the limited temporal coverage of the observed data. Longer-term observed data are still needed to validate the phenology trend in the future.


Asunto(s)
Bases de Datos Factuales , Ecosistema , Modelos Biológicos , Historia del Siglo XX , Historia del Siglo XXI , Tibet
11.
Int J Appl Earth Obs Geoinf ; 46: 1-12, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27688742

RESUMEN

Accurate and up-to-date information on the spatial distribution of paddy rice fields is necessary for the studies of trace gas emissions, water source management, and food security. The phenology-based paddy rice mapping algorithm, which identifies the unique flooding stage of paddy rice, has been widely used. However, identification and mapping of paddy rice in rice-wetland coexistent areas is still a challenging task. In this study, we found that the flooding/transplanting periods of paddy rice and natural wetlands were different. The natural wetlands flood earlier and have a shorter duration than paddy rice in the Panjin Plain, a temperate region in China. We used this asynchronous flooding stage to extract the paddy rice planting area from the rice-wetland coexistent area. MODIS Land Surface Temperature (LST) data was used to derive the temperature-defined plant growing season. Landsat 8 OLI imagery was used to detect the flooding signal and then paddy rice was extracted using the difference in flooding stages between paddy rice and natural wetlands. The resultant paddy rice map was evaluated with in-situ ground-truth data and Google Earth images. The estimated overall accuracy and Kappa coefficient were 95% and 0.90, respectively. The spatial pattern of OLI-derived paddy rice map agrees well with the paddy rice layer from the National Land Cover Dataset from 2010 (NLCD-2010). The differences between RiceLandsat and RiceNLCD are in the range of ±20% for most 1-km grid cell. The results of this study demonstrate the potential of the phenology-based paddy rice mapping algorithm, via integrating MODIS and Landsat 8 OLI images, to map paddy rice fields in complex landscapes of paddy rice and natural wetland in the temperate region.

12.
ISPRS J Photogramm Remote Sens ; 106: 157-171, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27667901

RESUMEN

Knowledge of the area and spatial distribution of paddy rice is important for assessment of food security, management of water resources, and estimation of greenhouse gas (methane) emissions. Paddy rice agriculture has expanded rapidly in northeastern China in the last decade, but there are no updated maps of paddy rice fields in the region. Existing algorithms for identifying paddy rice fields are based on the unique physical features of paddy rice during the flooding and transplanting phases and use vegetation indices that are sensitive to the dynamics of the canopy and surface water content. However, the flooding phenomena in high latitude area could also be from spring snowmelt flooding. We used land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to determine the temporal window of flooding and rice transplantation over a year to improve the existing phenology-based approach. Other land cover types (e.g., evergreen vegetation, permanent water bodies, and sparse vegetation) with potential influences on paddy rice identification were removed (masked out) due to their different temporal profiles. The accuracy assessment using high-resolution images showed that the resultant MODIS-derived paddy rice map of northeastern China in 2010 had a high accuracy (producer and user accuracies of 92% and 96%, respectively). The MODIS-based map also had a comparable accuracy to the 2010 Landsat-based National Land Cover Dataset (NLCD) of China in terms of both area and spatial pattern. This study demonstrated that our improved algorithm by using both thermal and optical MODIS data, provides a robust, simple and automated approach to identify and map paddy rice fields in temperate and cold temperate zones, the northern frontier of rice planting.

13.
ISPRS J Photogramm Remote Sens ; 105: 220-233, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27695195

RESUMEN

Accurate and timely rice paddy field maps with a fine spatial resolution would greatly improve our understanding of the effects of paddy rice agriculture on greenhouse gases emissions, food and water security, and human health. Rice paddy field maps were developed using optical images with high temporal resolution and coarse spatial resolution (e.g., Moderate Resolution Imaging Spectroradiometer (MODIS)) or low temporal resolution and high spatial resolution (e.g., Landsat TM/ETM+). In the past, the accuracy and efficiency for rice paddy field mapping at fine spatial resolutions were limited by the poor data availability and image-based algorithms. In this paper, time series MODIS and Landsat ETM+/OLI images, and the pixel- and phenology-based algorithm are used to map paddy rice planting area. The unique physical features of rice paddy fields during the flooding/open-canopy period are captured with the dynamics of vegetation indices, which are then used to identify rice paddy fields. The algorithm is tested in the Sanjiang Plain (path/row 114/27) in China in 2013. The overall accuracy of the resulted map of paddy rice planting area generated by both Landsat ETM+ and OLI is 97.3%, when evaluated with areas of interest (AOIs) derived from geo-referenced field photos. The paddy rice planting area map also agrees reasonably well with the official statistics at the level of state farms (R2 = 0.94). These results demonstrate that the combination of fine spatial resolution images and the phenology-based algorithm can provide a simple, robust, and automated approach to map the distribution of paddy rice agriculture in a year.

14.
IEEE Trans Med Imaging ; 43(4): 1640-1651, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38133966

RESUMEN

Unsupervised domain adaptation(UDA) aims to mitigate the performance drop of models tested on the target domain, due to the domain shift from the target to sources. Most UDA segmentation methods focus on the scenario of solely single source domain. However, in practical situations data with gold standard could be available from multiple sources (domains), and the multi-source training data could provide more information for knowledge transfer. How to utilize them to achieve better domain adaptation yet remains to be further explored. This work investigates multi-source UDA and proposes a new framework for medical image segmentation. Firstly, we employ a multi-level adversarial learning scheme to adapt features at different levels between each of the source domains and the target, to improve the segmentation performance. Then, we propose a multi-model consistency loss to transfer the learned multi-source knowledge to the target domain simultaneously. Finally, we validated the proposed framework on two applications, i.e., multi-modality cardiac segmentation and cross-modality liver segmentation. The results showed our method delivered promising performance and compared favorably to state-of-the-art approaches.


Asunto(s)
Corazón , Hígado , Corazón/diagnóstico por imagen , Hígado/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador
15.
Sci Data ; 11(1): 691, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926401

RESUMEN

The amount of actively cultivated land in China is increasingly threatened by rapid urbanization and rural population aging. Quantifying the extent and changes of active cropland and cropping intensity is crucial to global food security. However, national-scale datasets for smallholder agriculture are limited in spatiotemporal continuity, resolution, and precision. In this paper, we present updated annual Cropland Use Intensity maps in China (China-CUI10m) with descriptions of the extent of fallow/abandoned, actively cropped fields and cropping intensity at a 10-m resolution in recent six years (2018-2023). The dataset is produced by robust algorithms with no requirements for regional adjustments or intensive training samples, which take full advantage of the Sentinel-1 (S1) SAR and Sentinel-2 (S2) MSI time series. The China-CUI10m maps have achieved high accuracy when compared to ground truth data (Overall accuracy = 90.88%) and statistical data (R2 > 0.94). This paper provides the recent trends in cropland abandonment and agricultural intensification in China, which contributes to facilitating geographic-targeted cropland use control policies towards sustainable intensification of smallholder agricultural systems in developing countries.

16.
Sci Data ; 11(1): 671, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38909027

RESUMEN

Accurate cropland map serves as the cornerstone of effective agricultural monitoring. Despite the continuous enrichment of remotely sensed cropland maps, pervasive inconsistencies have impeded their further application. This issue is particularly evident in areas with limited valid observations, such as southwestern China, which is characterized by its complex topography and fragmented parcels. In this study, we constructed multi-sourced samples independent of the data producers, taking advantage of open-source validation datasets and sampling to rectify the accuracy of ten contemporary cropland maps in southwestern China, decoded their inconsistencies, and generated a refined cropland map (CroplandSyn) by leveraging ten state-of-the-art remotely sensed cropland maps released from 2021 onwards using the self-adaptive threshold method. Validations, conducted at both prefecture and county scales, underscored the superiority of the refined cropland map, aligning more closely with national land survey data. The refined cropland map and samples are publicly available to users. Our study offers valuable insights for improving agricultural practices and land management in under-monitored areas by providing high-quality cropland maps and validation datasets.

17.
Sci Total Environ ; 901: 166490, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-37611713

RESUMEN

Urban and rural vegetation are affected by both climate change and human activities, but the role of urbanization in vegetation productivity is unclear given the dual impacts. Here, we delineated urban area (UA) and rural area (RA), quantified the relative impacts of climate change and human activities on gross primary production (GPP) in 34 major cities (MCs) in China from 2000 to 2018, and analyzed the intrinsic impacts of urbanization on GPP. First, we found that the total urban impervious surface coverage (ISC) of the 34 MCs increased by 13.25 % and the mean annual GPP increased by 211 gC m-2 during the study period. GPP increased significantly in urban core areas, but decreased significantly in urban expansion areas, which was mainly due to a large amount of vegetation loss due to land use conversion. Second, the variability of GPP in UA was generally lower than in RA. Both climate change and human activities had a positive impact on GPP in UA and RA in the 34 MCs, of which the contribution was 49 % and 51 % in UA, and 76 % and 24 % in RA, respectively. Third, under climate change and human activities, the increase in GPP offset 4.96 % and 12.35 % of the impact of land use conversion on GPP in 2000 and 2018, respectively, which indicated that the offset strengthened over time. These findings emphasize the role of human activities in promoting carbon sequestration in urban vegetation, which is crucial for better understanding the processes and mechanisms of urban carbon cycles. Decision-makers can manage urban vegetation based on vegetation carbon sequestration potential as regions urbanize, aiding comprehensive decision-making.

18.
iScience ; 26(7): 107096, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37408686

RESUMEN

Floods occur more frequently in the context of climate change; however, flood monitoring capacity has not been well established. Here, we used a synergic mapping framework to characterize summer floods in the middle and lower reaches of the Yangtze River Plain and the effects on croplands in 2020, from both flood extent and intensity perspectives. We found that the total flood extent was 4936 km2 from July to August, and for flood intensity, 1658, 1382, and 1896 km2 of areas experienced triple, double, and single floods. A total of 2282 km2 croplands (46% of the flooded area) were inundated mainly from Poyang and Dongting Lake Basins, containing a high ratio of moderate damage croplands (47%). The newly increased flooding extent in 2020 was 29% larger than the maximum ever-flooded extent in 2015-2019. This study is expected to provide a reference for rapid regional flood disaster assessment and serving mitigation.

19.
Sci Data ; 9(1): 407, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35840621

RESUMEN

As a routine agricultural practice, irrigation is fundamental to protect crops from water scarcity and ensure food security in China. However, consistent and reliable maps about the spatial distribution and extent of irrigated croplands are still unavailable, impeding water resource management and agricultural planning. Here, we produced annual 500-m irrigated cropland maps across China for 2000-2019, using a two-step strategy that integrated statistics, remote sensing, and existing irrigation products into a hybrid irrigation dataset. First, we generated intermediate irrigation maps (MIrAD-GI) by fusing the MODIS-derived greenness index and statistical data. Second, we collected all existing available irrigation maps over China and integrated them with MIrAD-GI into an improved series of annual irrigation maps, using constrained statistics and a synergy mapping method. The resultant maps had moderate overall accuracies (0.732~0.819) based on nationwide reference ground samples and outperformed existing irrigation products by inter-comparison. As the first of this kind in China, the annual maps delineated the spatiotemporal pattern of irrigated croplands and could contribute to sustainable water use and agricultural development.

20.
Biology (Basel) ; 11(2)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35205036

RESUMEN

Timely and accurate forecasts of dengue cases are of great importance for guiding disease prevention strategies, but still face challenges from (1) time-effectiveness due to time-consuming satellite data downloading and processing, (2) weak spatial representation capability due to data dependence on administrative unit-based statistics or weather station-based observations, and (3) stagnant accuracy without the application of historical case information. Geospatial big data, cloud computing platforms (e.g., Google Earth Engine, GEE), and emerging deep learning algorithms (e.g., long short term memory, LSTM) provide new opportunities for advancing these efforts. Here, we focused on the dengue epidemics in the urban agglomeration of the Federal District of Brazil (FDB) during 2007-2019. A new framework was proposed using geospatial big data analysis in the Google Earth Engine (GEE) platform and long short term memory (LSTM) modeling for dengue case forecasts over an epidemiological week basis. We first defined a buffer zone around an impervious area as the main area of dengue transmission by considering the impervious area as a human-dominated area and used the maximum distance of the flight range of Aedes aegypti and Aedes albopictus as a buffer distance. Those zones were used as units for further attribution analyses of dengue epidemics by aggregating the pixel values into the zones. The near weekly composite of potential driving factors was generated in GEE using the epidemiological weeks during 2007-2019, from the relevant geospatial data with daily or sub-daily temporal resolution. A multi-step-ahead LSTM model was used, and the time-differenced natural log-transformed dengue cases were used as outcomes. Two modeling scenarios (with and without historical dengue cases) were set to examine the potential of historical information on dengue forecasts. The results indicate that the performance was better when historical dengue cases were used and the 5-weeks-ahead forecast had the best performance, and the peak of a large outbreak in 2019 was accurately forecasted. The proposed framework in this study suggests the potential of the GEE platform, the LSTM algorithm, as well as historical information for dengue risk forecasting, which can easily be extensively applied to other regions or globally for timely and practical dengue forecasts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA