Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(1): 29-40, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36537218

RESUMEN

Toehold-mediated strand displacement and its regulatory tools are fundamental for DNA nanotechnology. However, current regulatory tools all need to change the original sequence of reactants, making the regulation inconvenient and cumbersome. More importantly, the booming development of DNA nanotechnology will soon promote the production of packaged and batched devices or circuits with specified functions. Regarding standardized, packaged DNA nanodevices, access to personalized post-modification will greatly help users, whereas none of the current regulatory tools can provide such access, which has greatly constrained DNA nanodevices from becoming more powerful and practical. Herein, we developed a novel regulation tool named Cap which has two basic functions of subtle regulation of the reaction rate and erasability. Based on these functions, we further developed three advanced functions. Through integration of all functions of Cap and its distinct advantage of working independently, we finally realized personalized tailor-made post-modification on pre-fabricated DNA circuits. A pre-fabricated dual-output DNA circuit was successfully transformed into an equal-output circuit, a signal-antagonist circuit and a covariant circuit according to our requirements. Taken together, Cap is easy to design and generalizable for all strand displacement-based DNA nanodevices. We believe the Cap tool will be widely used in regulating reaction networks and personalized tailor-made post-modification of DNA nanodevices.


Asunto(s)
ADN , Nanotecnología , ADN/genética , Recombinación Genética
2.
Mol Carcinog ; 63(3): 384-399, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38116886

RESUMEN

Long noncoding RNA urothelial carcinoma associated 1 (UCA1) has been identified as a key molecule in human cancers. However, its functional implications remain unspecified in the context of cervical cancer (CC). This research aims to identify the regulatory mechanism of UCA1 in CC. UCA1 was identified through microarray and confirmed through a quantitative real-time polymerase chain reaction. Proteins that bind with UCA1 were recognized using RNA pull-down assays along with RNA immunoprecipitation. Ubiquitination assays and coimmunoprecipitation were performed to explore the molecular mechanisms of the SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily d, member 3 (SMARCD3) downregulated in CC. The effects of UCA1 and SMARCD3 on the progression of CC were investigated through gain- and loss-of-function assays and xenograft tumor formation in vivo. In this study, UCA1 was found to be upregulated in CC cells as well as in human plasma exosomes for the first time. Functional studies indicated that UCA1 promotes CC progression. Mechanically, UCA1 downregulated the SMARCD3 protein stabilization by promoting SMARCD3 ubiquitination. Taken together, we revealed that the UCA1/SMARCD3 axis promoted CC progression, which could provide a new therapeutic target for CC.


Asunto(s)
Carcinoma de Células Transicionales , MicroARNs , ARN Largo no Codificante , Neoplasias de la Vejiga Urinaria , Neoplasias del Cuello Uterino , Femenino , Humanos , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias del Cuello Uterino/genética , Invasividad Neoplásica/genética , Proliferación Celular/genética , MicroARNs/genética , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral
3.
Chemphyschem ; 25(14): e202400304, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622796

RESUMEN

In the field of photocatalysis, new heterojunction materials are increasingly explored to achieve efficient energy conversion and environmental catalysis under visible light and sunlight. This paper presents a study on two newly constructed two-dimensional van der Waals heterojunctions, Sc2CCl2/MoSe2 and Sc2CCl2/PtSe2, using density-functional theory. The study includes a systematic investigation of their geometrical structure, electronic properties, and optical properties. The results indicate that both heterojunctions are thermodynamically, kinetically, and mechanically stable. Additionally, Bader charge analysis reveals that both heterojunctions exhibit typical type II band properties. However, the band gap of the Sc2CCl2/MoSe2 heterojunction is only 1.18 eV, which is insufficient to completely cross the reduction and oxidation (REDOX) potential of 1.23 eV, whereas the band gap of Sc2CCl2/PtSe2 heterojunction is 1.49 eV, which is theoretically capable for water decomposition. The subsequent calculation of the Sc2CCl2/PtSe2 heterojunction demonstrate excellent hole carrier mobility and high efficiency light absorption in the visible light range, facilitating the separation of photogenerated electrons and holes. More importantly, Sc2CCl2/PtSe2 vdW type II heterojunction can achieve full water decomposition from pH 1 to pH 4, and its thermodynamic feasibility is confirmed by Gibbs free energy results. The aim of this study is to develop materials and analyses that will result in optoelectronic devices that are more efficient, stable, and sustainable.

4.
Phys Chem Chem Phys ; 26(4): 2973-2985, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38224019

RESUMEN

The coupling of two-dimensional van der Waals heterojunctions is an effective way to achieve photocatalytic hydrogen production. This paper designs the MoxW1-xS2/AlN (x = 0, 0.25, 0.5, 0.75, 1) van der Waals heterojunction as a possible photocatalytic material. By using first-principles calculations, the effects of different Mo/W ratios on the band gap and photocatalytic hydrogen production performance of heterojunctions were investigated. The results show that the heterojunction is a direct Z-scheme photocatalyst and can achieve overall water splitting. By calculating the absorption spectrum, it is found that the heterojunction has a wider visible light absorption range when the bimetal is added, and there is still a strong absorption peak at 615 nm. With the increase of the Mo atom ratio, the absorption spectrum is red-shifted. The Gibbs free energy of the two-component Mo0.5W0.5S2/AlN heterojunction is only -0.028 eV. Our work provides a new perspective for the modification of 2D transition metal dichalcogenide photocatalytic heterojunctions.

5.
Environ Res ; 252(Pt 3): 119040, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38692424

RESUMEN

Floods in global large rivers modulate the transport of dissolved organic carbon (DOC) and estuarine hydrological characteristics significantly. This study investigated the impact of a severe flood on the sources and age of DOC in the Yangtze River Estuary (YRE) in 2020. Comparing the flood period in 2020 to the non-flood period in 2017, we found that the flood enhanced the transport of young DOC to the East China Sea (ECS), resulting in significantly enriched Δ14C-DOC values. During the flood period, the proportion of modern terrestrial organic carbon (OC) was significantly higher compared to the non-flood period. Conversely, the proportion of pre-aged sediment OC was significantly lower during the flood period. The high turbidity associated with the flood facilitated rapid transformation and mineralization of sedimentary and fresh terrestrial OC, modifying the sources of DOC. The flux of modern terrestrial OC transported to the ECS during the flood period was 1.58 times higher than that of the non-flood period. These findings suggest that floods can modulate the sources and decrease the age of DOC, potentially leading to increased greenhouse gas emissions. Further research is needed to understand the long-term impacts of floods on DOC dynamics in global estuaries.


Asunto(s)
Carbono , Estuarios , Inundaciones , Ríos , China , Ríos/química , Carbono/análisis , Monitoreo del Ambiente , Sedimentos Geológicos/análisis , Sedimentos Geológicos/química , Contaminantes Químicos del Agua/análisis
6.
J Nanobiotechnology ; 22(1): 408, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992664

RESUMEN

BACKGROUND: Ovarian cancer (OC) has the highest fatality rate among all gynecological malignancies, necessitating the exploration of novel, efficient, and low-toxicity therapeutic strategies. Ferroptosis is a type of programmed cell death induced by iron-dependent lipid peroxidation and can potentially activate antitumor immunity. Developing highly effective ferroptosis inducers may improve OC prognosis. RESULTS: In this study, we developed an ultrasonically controllable two-dimensional (2D) piezoelectric nanoagonist (Bi2MoO6-MXene) to induce ferroptosis. A Schottky heterojunction between Bi2MoO6 (BMO) and MXene reduced the bandgap width by 0.44 eV, increased the carrier-separation efficiency, and decreased the recombination rate of electron-hole pairs under ultrasound stimulation. Therefore, the reactive oxygen species yield was enhanced. Under spatiotemporal ultrasound excitation, BMO-MXene effectively inhibited OC proliferation by more than 90%, induced lipid peroxidation, decreased mitochondrial-membrane potential, and inactivated the glutathione peroxidase and cystathionine transporter protein system, thereby causing ferroptosis in tumor cells. Ferroptosis in OC cells further activated immunogenic cell death, facilitating dendritic cell maturation and stimulating antitumor immunity. CONCLUSION: We have succeeded in developing a highly potent ferroptosis inducer (BMO-MXene), capable of inhibiting OC progression through the sonodynamic-ferroptosis-immunogenic cell death pathway.


Asunto(s)
Ferroptosis , Muerte Celular Inmunogénica , Neoplasias Ováricas , Ferroptosis/efectos de los fármacos , Femenino , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Humanos , Animales , Línea Celular Tumoral , Muerte Celular Inmunogénica/efectos de los fármacos , Ratones , Especies Reactivas de Oxígeno/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Bismuto/farmacología , Bismuto/química
7.
Nucleic Acids Res ; 50(22): 12674-12688, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36484104

RESUMEN

Although CRISPR-Cas12a [clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 12a] combining pre-amplification technology has the advantage of high sensitivity in biosensing, its generality and specificity are insufficient, which greatly restrains its application range. Here, we discovered a new targeting substrate for LbaCas12a (Lachnospiraceae bacterium Cas12a), namely double-stranded DNA (dsDNA) with a sticky-end region (PAM-SE+ dsDNA). We discovered that CRISPR-Cas12a had special enzymatic properties for this substrate DNA, including the ability to recognize and cleave it without needing a protospacer adjacent motif (PAM) sequence and a high sensitivity to single-base mismatches in that substrate. Further mechanism studies revealed that guide RNA (gRNA) formed a triple-stranded flap structure with the substrate dsDNA. We also discovered the property of low-temperature activation of CRISPR-Cas12a and, by coupling with the unique DNA hybridization kinetics at low temperature, we constructed a complete workflow for low-abundance point mutation detection in real samples, which was fast, convenient and free of single-stranded DNA (ssDNA) transformation. The detection limits were 0.005-0.01% for synthesized strands and 0.01-0.05% for plasmid genomic DNA, and the mutation abundances provided by our system for 28 clinical samples were in accordance with next-generation sequencing results. We believe that our work not only reveals novel information about the target recognition mechanism of the CRISPR-Cas12a system, but also greatly broadens its application scenarios.


Asunto(s)
Proteínas Asociadas a CRISPR , Sistemas CRISPR-Cas , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Bacterianas/metabolismo , ADN/química , ADN de Cadena Simple/genética
8.
Anal Chem ; 95(51): 18828-18835, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38078896

RESUMEN

DNA methylation is closely related to cancer. It is generally accepted that DNA methylation detection is crucial in cancer diagnosis, prognosis, and treatment monitoring. Therefore, there is an urgent demand for developing a simple, rapid, highly sensitive, and highly specific methylation detection method to detect DNA methylation at specific sites quantitatively. In this work, we introduce a DNA methylation detection method based on MutS and methylation-specific PCR, named MutS-based methylation-specific PCR (MB-MSP), which has the advantages of simplicity, speed, high specificity, sensitivity, and broad applicability. Utilizing the MutS's ability to bind mismatched base pairs, we inhibit not only the amplification of unmethylated DNA but also nonspecific primer amplification. We achieved a detection sensitivity of 0.5% for the methylated genes of ACP1, CLEC11A, and SEPT9 by MB-MSP. It has a good linear relationship and a detection time of only 1.5 h. To validate the feasibility of the MB-MSP method in clinical application, we conducted methylation detection on plasma-circulating tumor DNA samples from 10 liver cancer patients and 5 healthy people, achieving a 100% accuracy rate. In conclusion, MB-MSP, as a novel and reliable DNA methylation detection tool, holds significant application value and potential for advancing early cancer diagnosis.


Asunto(s)
Metilación de ADN , Neoplasias , Humanos , Proteínas MutS , ADN/genética , Reacción en Cadena de la Polimerasa/métodos
9.
Phys Chem Chem Phys ; 25(45): 30924-30933, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37937371

RESUMEN

In this study, the photocatalytic properties of AlN/TMO heterojunctions formed by coupling MoO2 and WO2 of transition metal oxides with AlN are studied in detail using first-principles calculations with the aim of finding efficient and low-cost photocatalysts for water splitting to produce hydrogen to reduce environmental pollution. The AIMD, phonon spectrum, and elastic constants demonstrated the thermodynamic, kinetic, and mechanical stabilities of the AlN/TMO heterojunction. The results showed that the AlN/MoO2 (1.55 eV) and AlN/WO2 (1.99 eV) heterojunctions have typical type-II energy band arrangements, which can effectively promote the separation of photogenerated electrons and hole pairs. Meanwhile, the AlN/MoO2 heterojunction showed excellent carrier mobilities (electron, 250.05 cm2 V-1 S-1 and hole, 45 467.07 cm2 V-1 S-1), which greatly exceeded those of each component. The AlN/WO2 heterojunction showed an excellent HER (-0.07 eV) performance, which was close to the expected value. For the AlN/WO2 heterojunction, a suitable band gap value, excellent HER, and other properties indicated that it has the potential to become a new candidate for photocatalytic water splitting. Our study enriches the theoretical research of transition metal oxide materials and wide-band gap materials by providing a reference direction for the design of reasonably high-quality photocatalysts.

10.
Anal Chem ; 94(24): 8596-8604, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35670376

RESUMEN

The CRISPR-Cas12a system is a new type of genome editing tool with high efficiency and targeting. However, other sequences in the genome may also be cleaved nonspecifically, resulting in unavoidable off-target effects. Therefore, it is necessary to learn more about the mechanism of CRISPR-Cas12a to recognize target sequences to avoid its off-target effects. Here, we show that insertion (DNA bubble) or deletion (RNA bubble) of the target dsDNA sequence compared with the crRNA sequence, the CRISPR-Cas12a system can still recognize and cleave the target dsDNA sequence. We conclude that the tolerance of CRISPR-Cas12a to the bubbles is closely related to the location and size of the bubble and the GC base content of crRNA. In addition, we used the unique property of CRISPR-Cas12a to invent a new method to detect mutations and successfully detect the CD41-42(-CTTT) mutation. The detection limit of this method is 0.001%. Overall, our results strongly indicate that in addition to considering off-target effects caused by base mismatches, a comprehensive off-target analysis of the insertion and deletion of the target dsDNA sequence is required, and specific guidelines for effectively reducing potential off-target cleavage are proposed, to improve the safety manual of CRISPR-Cas12a biological application.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , ADN/genética , Edición Génica/métodos , Mutación , ARN/genética
11.
BMC Cancer ; 22(1): 1203, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36418995

RESUMEN

BACKGROUND: The long-term oncologic outcomes after laparoscopic and open procedures for patients with intermediate­ and high­risk endometrial cancer (EC) remain unclear. Accordingly, laparoscopy cannot still be recommended as the standard choice for intermediate­ and high­risk EC. This retrospective study aimed to assess the perioperative and long-term oncologic outcomes of laparoscopy and open surgery in patients with intermediate- and high­risk ECs within a minimum 4-year follow-up. METHODS: We included 201 patients who underwent laparoscopic or open procedures for intermediate­ and high­risk EC between 2010 and 2017. Between-procedure comparisons of perioperative and oncological outcomes were performed using the independent t-test or Pearson's chi-squared test and the Kaplan-Meier method, respectively. RESULTS: Finally, there were 136 intermediate­ and 65 high­risk endometrial tumors in the laparoscopic and open groups, respectively. There were no between-group differences in all baseline characteristics. Compared with the open group, the laparoscopic group had a significantly longer mean operating time (p = 0.005) and a lower mean estimated blood loss (EBL) (p = 0.031). There was a higher possibility of postoperative complication in the open group than in the laparoscopic group (p = 0.048). There were no significant between-group differences in pathological outcomes as well as the recurrence-free survival and overall survival rates (p = 0.626 and p = 0.148, respectively). CONCLUSIONS: Among patients with intermediate­ and high­risk EC, laparoscopic surgery has an advantage over the open surgery in reducing EBL and the rate of postoperative complications without weakening the oncological control. There were no between-procedure differences in the recurrence-free and overall survival rates.


Asunto(s)
Neoplasias Endometriales , Laparoscopía , Humanos , Femenino , Estudios Retrospectivos , Estudios de Seguimiento , Laparoscopía/efectos adversos , Laparoscopía/métodos , Complicaciones Posoperatorias , Neoplasias Endometriales/cirugía , Neoplasias Endometriales/patología
12.
Analyst ; 147(8): 1534-1539, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35311862

RESUMEN

Single base mutations are closely related to cancer diagnosis and treatment. The fluorescent probe method is one of the important methods to detect single-base mutations. We constructed a universal probe detection system based on endonuclease IV and the DNA strand displacement reaction. The system uses two toehold strand displacement reactions to relay the mutation information to the universal strand. There is no need to design the probe one-by-one for each mutation point during multi-site detection. It has the advantages of simple operation, rapid detection, and low cost. We used this method to detect common clinical mutation sites (PTEN R130Q/EGFR L858R/PTEN rs1473918395), and the detection limit can reach 0.1%-1%. The detection system can provide a new rapid and economical method for clinical single-base mutation detection, and has broad application prospects in diagnosis and prognostic evaluation.


Asunto(s)
Técnicas Biosensibles , Mutación Puntual , Técnicas Biosensibles/métodos , ADN/genética , Desoxirribonucleasa IV (Fago T4-Inducido)/genética , Colorantes Fluorescentes , Mutación
13.
Sensors (Basel) ; 23(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36616927

RESUMEN

In clinical conditions, polysomnography (PSG) is regarded as the "golden standard" for detecting sleep disease and offering a reference of objective sleep quality. For healthy adults, scores from sleep questionnaires are more reliable than other methods in obtaining knowledge of subjective sleep quality. In practice, the need to simplify PSG to obtain subjective sleep quality by recording a few channels of physiological signals such as single-lead electrocardiogram (ECG) or photoplethysmography (PPG) signal is still very urgent. This study provided a two-step method to differentiate sleep quality into "good sleep" and "poor sleep" based on the single-lead wearable cardiac cycle data, with the comparison of the subjective sleep questionnaire score. First, heart rate variability (HRV) features and ECG-derived respiration features were extracted to construct a sleep staging model (wakefulness (W), rapid eye movement (REM), light sleep (N1&N2) and deep sleep (N3)) using the multi-classifier fusion method. Then, features extracted from the sleep staging results were used to construct a sleep quality evaluation model, i.e., classifying the sleep quality as good and poor. The accuracy of the sleep staging model, tested on the international public database, was 0.661 and 0.659 in Cardiology Challenge 2018 training database and Sleep Heart Health Study Visit 1 database, respectively. The accuracy of the sleep quality evaluation model was 0.786 for our recording subjects, with an average F1-score of 0.771. The proposed sleep staging model and sleep quality evaluation model only requires one channel of wearable cardiac cycle signal. It is very easy to transplant to portable devices, which facilitates daily sleep health monitoring.


Asunto(s)
Calidad del Sueño , Dispositivos Electrónicos Vestibles , Adulto , Humanos , Sueño/fisiología , Polisomnografía/métodos , Fases del Sueño/fisiología , Frecuencia Cardíaca/fisiología
14.
Appl Math Model ; 81: 582-602, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32287944

RESUMEN

This article investigates the dispersion of airborne pollutants emitted from different locations near a high-rise building. A Computational Fluid Dynamics (CFD) model for simulating the wind flow field and the pollutant dispersion was developed and validated by wind tunnel data. Then the spreading of the pollutant emitted from different locations to a rectangular-shaped high-rise residential (HRR) building was numerically studied. The pollutant source location was set in a wide range of the position angle and distance between the source and the building. It was found that the pollutant concentration on the building decreases with an increase in the emission distance whereas the effect of the position angle is more complicated. Interestingly, there is a critical range of the position angle from which the emitted pollutants will not spread to the building in a significant way. The effect of the source location was linked to the wind flow field around the building, particularly with several major flows. The vertical distributions of the pollutant concentration on different faces were also investigated, and it was found that these are more affected by the vertical flow near each face. Finally, a mathematical model was developed to evaluate the pollutant concentration as a function of the emission distance and position angle. These findings are helpful to the understanding of the dispersion of airborne pollutants around high-rise buildings and the related hazard management in urban design.

15.
J Cell Biochem ; 120(3): 2973-2982, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30520098

RESUMEN

Neuropathic pain is a somatosensory disorder which is caused by disease or nerve injury that affects the nervous system. microRNAs (miRNAs) are proved to play crucial roles in the development of neuropathic pain. However, the role of miR-202 in neuropathic pain is still unknown. Sprague-Dawley rats were used for constructing the neuropathic pain model. The expression of miR-202 was determined by quantitative real-time polymerase chain reaction. Potential target gene for miR-202 was measured using bioinformatics methods and Western blot analysis. In this study, we used rats to establish a neuropathic pain model and measured the effect of miR-202 in neuropathic pain. We demonstrated that miR-202 expression was downregulated in the spinal dorsal horn of bilateral sciatic nerve chronic constriction injury (bCCI) rat. However, miR-202 expression was not changed in the dorsal root ganglion, hippocampus, and anterior cingulated cortex of bCCI rat. We identified that RAP1A was a direct target gene of miR-202 in the PC12 cell. RAP1A expression was upregulated in the spinal dorsal horn of bCCI rat. Overexpression of miR-202 could improve the pain threshold for bCCI rats in both hindpaws, indicating that miR-202 overexpression could lighten the pain threshold for model rats. Moreover, RAP1A overexpression increased the pain threshold effect of miR-202 overexpression treated bCCI rats, indicating that miR-202 could lighten the pain threshold through inhibiting RAP1A expression. These data suggested that miR-202 acted pivotal roles in the development of neuropathic pain partly through targeting RAP1A gene.


Asunto(s)
MicroARNs/genética , Neuralgia/genética , Traumatismos de los Nervios Periféricos/genética , Proteínas de Unión al GTP rap1/genética , Proteínas de Unión al GTP rap1/metabolismo , Regiones no Traducidas 3' , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Ganglios Espinales/metabolismo , Regulación de la Expresión Génica , Masculino , Neuralgia/etiología , Neuralgia/metabolismo , Células PC12 , Traumatismos de los Nervios Periféricos/etiología , Traumatismos de los Nervios Periféricos/metabolismo , Ratas , Ratas Sprague-Dawley
16.
Soft Matter ; 15(29): 5933-5944, 2019 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-31286134

RESUMEN

As granular particles in a packing are athermal, their self-assembly has to be realized with the input of energy via walls. But different manners of energy input, e.g., through tapping or shearing walls, have not been discriminated previously. We address this problem in the self-assembly of identical granular spheres in prism-like containers subjected to one-dimensional (1D) vertical vibration by numerical simulations. The edge lengths or diameter of the containers are the integer multiples of the particle diameter. When energy is input with the vibration, the particles can self-assemble into mainly mixed FCC (face-centred-cubic) and HCP (hexagonal-close-packed) structures from the bottom wall and/or the side walls. According to different movements of the walls, the shear-induced and tap-induced self-assemblies are distinguished. These two self-assembly modes can emerge solely or simultaneously, with different but overlapping regions in the vibration amplitude and frequency phase diagram. The structures of the self-assembly from the two modes also present different features, suggesting different formation mechanisms. Moreover, it is found that the close-packed planes of the ordered clusters formed from different walls are often misaligned, leading to conflicts in the self-assembly of the whole system. These findings are helpful for both the understanding and controlling of the self-assembly of granular particles and other similar athermal and low-thermal systems.

17.
Soft Matter ; 14(48): 9856-9869, 2018 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-30480310

RESUMEN

The self-assembly of uniform granular spheres is related to the fundamentals of granular matter such as the transitions of phases, order/disorder and jamming states. This paper presents a DEM (discrete element method) study of the continuous self-assembly of uniform granular spheres from random close packing (RCP) to partially and nearly fully ordered packings under one-dimensional (1D) sinusoidal vibration without other interventions. The effects of the vibration amplitude and frequency are investigated in a wide range. The structures of the packings are characterized in terms of packing fraction and other microscopic structural parameters, including the coordination number, bond-orientational orders, and, in particular, ordered clusters, by adaptive common neighbor analysis (a-CNA). It is shown that 1D vibrations can also lead to the self-assembly of uniform granular spheres with packing fractions exceeding the RCP limit, and FCC (face centered cubic) and HCP (hexagonal close packed) structures coexist in the self-assembled packings while their total fraction can reach nearly 100%. The structures of these packings can be better correlated with the vibration velocity amplitude rather than the commonly used vibration intensity. The dynamics of such self-assembly is also preliminarily analyzed. Our study not only presents the conditions for the self-assembly of uniform granular spheres under 1D vibration, but also characterizes the order-disorder transitions during the process, which can improve our understanding of the fundamentals of granular materials and jamming states.

18.
Talanta ; 272: 125835, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38422905

RESUMEN

The expression level of human apurinic/apyrimidinic endonuclease 1 (APE1) is closely associated with the onset of various diseases, establishing it as a crucial clinical biomarker and a target in anti-cancer efforts. This study accomplished colorimetric and visual detection of APE1 by harnessing its endonuclease activity through catalytic hairpin self-assembly (CHA) and G-quadruplex/hemin DNAzyme. Optimization of the freedom degrees of the G-rich sequence significantly improved the detection performance of the strategy by influencing DNAzyme formation. Additionally, we replaced the signal reporting system with a molecular beacon to develop a fluorescence detection strategy, which served as an extension of the signal amplification system for validation and signal readout. The fluorescent probe method achieved a detection limit of 3.37 × 10-4 U/mL, while the colorimetric method yielded a detection limit of 6.5 × 10-3 U/mL, with a linear range spanning from 0.01 to 0.25 U/mL. Subsequently, the colorimetric approach effectively assessed APE1 activity in biological samples and facilitated the screening of APE1 activity inhibitors. Furthermore, this CHA/G-quadruplex/hemin DNAzyme strategy was adapted for the colorimetric detection of adenosine, showcasing its broad applicability across various biomarkers. The developed colorimetric analytical strategy represents a pivotal biosensing platform for diagnosing and treating diseases.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , G-Cuádruplex , Humanos , ADN Catalítico/metabolismo , Hemina , Colorimetría/métodos , Técnicas Biosensibles/métodos , Endonucleasas/metabolismo
19.
Aquat Toxicol ; 271: 106921, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38615580

RESUMEN

Thimerosal (THI) is the most widely used form of organic mercury in pharmaceutical and personal care products, and has become a major source of ethylmercury pollution in aquatic ecosystems. However, knowledge about its potential risk to aquatic species is limited. In this study, zebrafish were exposed to THI for 7 days, and variations in their behavioral traits, brain monoaminergic neurotransmitter contents, and related gene expression were investigated. After the 7-day exposure, THI reduced locomotor activity and thigmotaxis in males but not females. Exposure to THI increased the social interaction between females but decreased that between males. The THI exposure also significantly reduced the serotonin (5-HT), 5-hydroxyindoleacetic acid, dopamine (DA), and 3,4-dihydroxyphenylacetic acid contents in the brain of males, but only significantly decreased the DA content in females. Correlation analysis revealed that the neurochemical alterations in the brain of zebrafish play critical roles in the behavioral abnormalities induced by THI exposure. Moreover, THI also significantly altered the expression of some genes associated with the synthesis, metabolism, and receptor binding of 5-HT and DA in the brain of zebrafish. The differences in these gene expressions between female and male zebrafish exposed to THI seem to be an important mechanism underlying their sex-specific responses to this chemical. This is the first report on the sex-specific effects of THI on behaviors and brain monoaminergic neurotransmitter contents in zebrafish, which can further improve our understanding of its toxic effects on teleost.


Asunto(s)
Conducta Animal , Encéfalo , Timerosal , Contaminantes Químicos del Agua , Pez Cebra , Animales , Pez Cebra/fisiología , Masculino , Femenino , Timerosal/toxicidad , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Conducta Animal/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Serotonina/metabolismo , Dopamina/metabolismo , Monoaminas Biogénicas/metabolismo , Factores Sexuales , Caracteres Sexuales , Regulación de la Expresión Génica/efectos de los fármacos
20.
Med ; 5(6): 603-621.e7, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38608708

RESUMEN

BACKGROUND: Sperm selection, a key step in assisted reproductive technology (ART), has long been restrained at the preliminary physical level (morphology or motility); however, subsequent fertilization and embryogenesis are complicated biochemical processes. Such an enormous "gap" poses tough problems for couples dealing with infertility, especially patients with severe/total asthenozoospermia . METHODS: We developed a biochemical-level, automatic-screening/separation, smart droplet-TO-hydrogel chip (BLASTO-chip) for sperm selection. The droplet can sense the pH change caused by sperm's respiration products and then transforms into a hydrogel to be selected out. FINDINGS: The BLASTO-chip system can select biochemically active sperm with an accuracy of over 90%, and its selection efficiency can be flexibly tuned by nearly 10-fold. All the substances in the system were proven to be biosafe via evaluating mice fertilization and offspring health. Live sperm down to 1% could be enriched by over 76-fold to 76%. For clinical application to patients with severe/total asthenozoospermia, the BLASTO-chip could select live sperm from human semen samples containing 10% live but 100% immotile sperm. The rates of fertilization, cleavage, early embryos, and blastocysts were drastically elevated from 15% to 70.83%, 10% to 62.5%, 5% to 37.5%, and 0% to 16.67%, respectively. CONCLUSIONS: The BLASTO-chip represents a real biochemical-level technology for sperm selection that is completely independent of sperm's motility. It can be a powerful tool in ART, especially for patients with severe/total asthenozoospermia. FUNDING: This work was funded by the Ministry of Science and Technology of China, the Ministry of Education of China, and the Shenzhen-Hong Kong Hetao Cooperation Zone.


Asunto(s)
Astenozoospermia , Espermatozoides , Masculino , Humanos , Espermatozoides/metabolismo , Espermatozoides/química , Animales , Ratones , Astenozoospermia/metabolismo , Astenozoospermia/diagnóstico , Motilidad Espermática , Dispositivos Laboratorio en un Chip , Femenino , Técnicas Reproductivas Asistidas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA