Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 24(34): 10482-10489, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39140872

RESUMEN

Antiplatelet agents, particularly P2Y12 receptor inhibitors, are critical medicines in the prevention and treatment of thrombotic diseases in the clinic. However, their long-term use introduces a significant risk of bleeding in patients with cardiovascular diseases. Whether the bleeding is caused by the drug itself or due to surgical procedures or trauma, the need to rapidly reverse the effects of antiplatelet agents in the circulation is essential; however, no such agents are currently available. To address this need, here we describe a strategy that uses cell-membrane-wrapped nanoparticles (CM-NPs) for the rapid reversal of P2Y12 inhibitors. CM-NPs are fabricated with membranes derived from 293T cells genetically engineered to overexpress the P2Y12 receptor. Our findings support the potential of CM-NPs as a strategy for managing bleeding complications associated with P2Y12 receptor inhibitors, offering an approach to improve the safety in the use of these drugs in clinical settings.


Asunto(s)
Membrana Celular , Clopidogrel , Nanopartículas , Inhibidores de Agregación Plaquetaria , Antagonistas del Receptor Purinérgico P2Y , Receptores Purinérgicos P2Y12 , Ticagrelor , Humanos , Receptores Purinérgicos P2Y12/genética , Receptores Purinérgicos P2Y12/metabolismo , Ticagrelor/farmacología , Ticagrelor/química , Ticagrelor/uso terapéutico , Nanopartículas/química , Clopidogrel/farmacología , Antagonistas del Receptor Purinérgico P2Y/farmacología , Antagonistas del Receptor Purinérgico P2Y/química , Membrana Celular/metabolismo , Membrana Celular/efectos de los fármacos , Inhibidores de Agregación Plaquetaria/farmacología , Inhibidores de Agregación Plaquetaria/química , Inhibidores de Agregación Plaquetaria/uso terapéutico , Células HEK293
2.
Mol Cancer ; 23(1): 117, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824567

RESUMEN

Significant advancements have been made in the application of chimeric antigen receptor (CAR)-T treatment for blood cancers during the previous ten years. However, its effectiveness in treating solid tumors is still lacking, necessitating the exploration of alternative immunotherapies that can overcome the significant challenges faced by current CAR-T cells. CAR-based immunotherapy against solid tumors shows promise with the emergence of macrophages, which possess robust phagocytic abilities, antigen-presenting functions, and the ability to modify the tumor microenvironment and stimulate adaptive responses. This paper presents a thorough examination of the latest progress in CAR-M therapy, covering both basic scientific studies and clinical trials. This study examines the primary obstacles hindering the realization of the complete potential of CAR-M therapy, as well as the potential strategies that can be employed to overcome these hurdles. With the emergence of revolutionary technologies like in situ genetic modification, synthetic biology techniques, and biomaterial-supported gene transfer, which provide a wider array of resources for manipulating tumor-associated macrophages, we suggest that combining these advanced methods will result in the creation of a new era of CAR-M therapy that demonstrates improved efficacy, safety, and availability.


Asunto(s)
Inmunoterapia Adoptiva , Neoplasias , Receptores Quiméricos de Antígenos , Microambiente Tumoral , Humanos , Neoplasias/terapia , Neoplasias/inmunología , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/genética , Inmunoterapia Adoptiva/métodos , Microambiente Tumoral/inmunología , Animales , Inmunoterapia/métodos
3.
Angew Chem Int Ed Engl ; 63(10): e202319116, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38225920

RESUMEN

Enhanced bioenergy anabolism through transmembrane redox reactions in artificial systems remains a great challenge. Here, we explore synthetic electron shuttle to activate transmembrane chemo-enzymatic cascade reactions in a mitochondria-like nanoarchitecture for augmenting bioenergy anabolism. In this nanoarchitecture, a dendritic mesoporous silica microparticle as inner compartment possesses higher load capacity of NADH as proton source and allows faster mass transfer. In addition, the outer compartment ATP synthase-reconstituted proteoliposomes. Like natural enzymes in the mitochondrion respiratory chain, a small synthetic electron shuttle embedded in the lipid bilayer facilely mediates transmembrane redox reactions to convert NADH into NAD+ and a proton. These facilitate an enhanced outward proton gradient to drive ATP synthase to rotate for catalytic ATP synthesis with improved performance in a sustainable manner. This work opens a new avenue to achieve enhanced bioenergy anabolism by utilizing a synthetic electron shuttle and tuning inner nanostructures, holding great promise in wide-range ATP-powered bioapplications.


Asunto(s)
NAD , Protones , NAD/metabolismo , Electrones , Adenosina Trifosfato/metabolismo , Mitocondrias/metabolismo , Transporte de Electrón
4.
Electrophoresis ; 44(9-10): 818-824, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36800176

RESUMEN

Short tandem repeat (STR) automatic typing technology is extensively used in forensic laboratories with commercial kits, in rare cases genotyping misinterpretations or mislabeling may occur due to unexpected rare alleles. This study refers to the investigation of several rare alleles observed from routine cases. Besides cross-kit verification with Goldeneye 25A (Beijing PeopleSpot Inc, China) and Huaxia platinum (Thermo Fisher Scientific, USA) kits, the next-generation sequencing technology by MiSeq FGx System (Illumina, USA) was applied to further validation. To solve the inconsistent outcomes reached by the above mentioned approaches at D2S441 locus, single gene amplification, gene cloning, and genetic sequencing was also performed. As a result, five rare alleles were detected. Two novel alleles of allele 3 at the D13S317 locus and allele 5 at the D2S441 locus were found; three previously reported alleles of allele 9 at D1S1656 locus, allele 19 at Penta D locus, and allele 28 at D12S391 locus in STRBase were initially supplemented with sequence information. We, therefore, propose that such uncommon observations with rare events should be carefully investigated and interpreted.


Asunto(s)
Dermatoglifia del ADN , Rubiaceae , Alelos , Repeticiones de Microsatélite/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Rubiaceae/genética , Genética de Población , Frecuencia de los Genes
5.
Lipids Health Dis ; 21(1): 87, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-36088434

RESUMEN

BACKGROUND: Hyperlipidaemia is an important factor that induces coronary artery disease (CAD). This study aimed to explore the lipid metabolism patterns and relevant clinical and molecular features of coronary artery disease patients. METHODS: In the current study, datasets were fetched from the Gene Expression Omnibus (GEO) database and nonnegative matrix factorization clustering was used to establish a new CAD classification based on the gene expression profile of lipid metabolism genes. In addition, this study carried out bioinformatics analysis to explore intrinsic biological and clinical characteristics of the subgroups. RESULTS: Data for a total of 615 samples were extracted from the Gene Expression Omnibus database and were associated with clinical information. Then, this study used nonnegative matrix factorization clustering for RNA sequencing data of 581 lipid metabolism relevant genes, and the 296 patients with CAD were classified into three subgroups (NMF1, NMF2, and NMF3). Subjects in subgroup NMF2 tended to have an increased severity of CAD. The CAD index and age of group NMF1 were similar to those of group NMF3, but their intrinsic biological characteristics exhibited significant differences. In addition, weighted gene coexpression network analysis (WGCNA) was used to determine the most important modules and screen lipid metabolism related genes, followed by further analysis of the DEGs in which the significant genes were identified based on clinical information. The progression of coronary atherosclerosis may be influenced by genes such as PTGDS and DGKE. CONCLUSION: Different CAD subgroups have their own intrinsic biological characteristics, indicating that more personalized treatment should be provided to patients in each subgroup, and some lipid metabolism related genes (PDGTS, DGKE and so on) were related significantly with clinical characteristics.


Asunto(s)
Biología Computacional , Enfermedad de la Arteria Coronaria , Enfermedad de la Arteria Coronaria/genética , Redes Reguladoras de Genes , Humanos , Metabolismo de los Lípidos/genética , Transcriptoma
6.
Molecules ; 27(11)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35684437

RESUMEN

Bacterial cellulose (BC) is well known as a high-performance dietary fiber. This study investigates the adsorption capacity of BC for cholesterol, sodium cholate, unsaturated oil, and heavy metal ions in vitro. Further, a hyperlipidemia mouse model was constructed to investigate the effects of BC on lipid metabolism, antioxidant levels, and intestinal microflora. The results showed that the maximum adsorption capacities of BC for cholesterol, sodium cholate, Pb2+ and Cr6+ were 11.910, 16.149, 238.337, 1.525 and 1.809 mg/g, respectively. Additionally, BC reduced the blood lipid levels, regulated the peroxide levels, and ameliorated the liver injury in hyperlipidemia mice. Analysis of the intestinal flora revealed that BC improved the bacterial community of intestinal microflora in hyperlipidemia mice. It was found that the abundance of Bacteroidetes was increased, while the abundance of Firmicutes and Proteobacteria was decreased at the phylum level. In addition, increased abundance of Lactobacillus and decreased abundance of Lachnospiraceae and Prevotellaceae were obtained at the genus level. These changes were supposed to be beneficial to the activities of intestinal microflora. To conclude, the findings prove the role of BC in improving lipid metabolism in hyperlipidemia mice and provide a theoretical basis for the utilization of BC in functional food.


Asunto(s)
Hiperlipidemias , Metabolismo de los Lípidos , Animales , Bacterias , Bacteroidetes , Celulosa/farmacología , Colesterol , Hiperlipidemias/tratamiento farmacológico , Ratones , Colato de Sodio
7.
Cancer Cell Int ; 20: 235, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32536823

RESUMEN

BACKGROUND: Aberrant DNA methylation patterns are involved in the pathogenesis of papillary renal cell carcinoma (pRCC). This study aimed to investigate the potential of methylation-driven genes as biomarkers in determining the prognosis of pRCC by bioinformatics analysis. METHODS: DNA methylation and transcriptome profiling data were downloaded from The Cancer Genome Atlas database. Methylation-driven genes (MDGs) were obtained using MethylMix R package. A Cox regression model was used to screen for pRCC prognosis-related MDGs, and a linear risk model based on MDG methylation profiles was constructed. A combined methylation and gene expression survival analysis was performed to further explore the prognostic value of MDGs independently. RESULTS: A total of 31 MDGs were obtained. Univariate and multivariate Cox regression analysis identified eight genes (CASP1, CD68, HOXD3, HHLA2, HOXD9, HOXA10-AS, TMEM71, and PLA2G16), which were used to construct a predictive model associated with overall survival in pRCC patients. Combined DNA methylation and gene expression survival analysis revealed that C19orf33, GGT6, GIPC2, HHLA2, HOXD3, HSD17B14, PLA2G16, and TMEM71 were significantly associated with patients' survival. CONCLUSION: Through the analysis of MDGs in pRCC, this study identified potential biomarkers for precision treatment and prognosis prediction, and provided the basis for future research into the molecular mechanism of pRCC.

8.
Theor Appl Genet ; 130(10): 2127-2137, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28725946

RESUMEN

KEY MESSAGE: This study validated one QTL for adult plant resistance to stripe rust, identified donor lines of the resistance allele, and demonstrated that it is different from previously named Yr genes. The spread of more virulent and aggressive races of Puccinia striiformis f. sp. tritici (Pst, causal pathogen of stripe rust) after the year 2000 has caused substantial yield losses worldwide. To find new sources of resistance, we previously performed a genome-wide association study and identified a strong QTL for adult plant resistance on the short arm of chromosome 6B (QYr.ucw-6B). In this study, we validated QYr.ucw-6B in ten biparental populations, and mapped it 0.6 cM proximal to IWA7257 and 3.9 cM distal to IWA4408. We showed that QYr.ucw-6B is located approximately 15 cM proximal to the all-stage resistance gene Yr35 and that none of the resistant lines carries the previously cloned Yr36 gene. Based on these results, QYr.ucw-6B was assigned the name Yr78. This gene was not effective against Pst at the seedling stage, suggesting that it is an adult plant resistance gene. Yr78 has been effective against Pst races present in field experiments performed in the Western USA between 2011 and 2016. Since this gene is predicted to be present at low frequency in wheat germplasm from this region, it can provide a useful tool to diversify the sources of resistance against this devastating pathogen.


Asunto(s)
Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo , Triticum/genética , Basidiomycota , Cromosomas de las Plantas , Genes de Plantas , Genotipo , Enfermedades de las Plantas/microbiología , Triticum/microbiología
9.
Chem Rec ; 17(11): 1135-1145, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28467681

RESUMEN

By catalyzing highly specific and tightly controlled chemical reactions, enzymes are essential to maintaining normal cellular physiology. However, aberrant enzymatic activity can be linked to the pathogenesis of various diseases. Therefore, the unusual activity of particular enzymes can represent testable biomarkers for the diagnosis or screening of certain diseases. In recent years, G-quadruplex-based platforms have attracted wide attention for the monitoring of enzymatic activities. In this Personal Account, we discuss our group's works on the development of G-quadruplex-based sensing system for enzyme activities by using mainly iridium(III) complexes as luminescent label-free probes. These studies showcase the versatility of the G-quadruplex for developing assays for a variety of different enzymes.


Asunto(s)
Complejos de Coordinación/química , Pruebas de Enzimas/métodos , G-Cuádruplex , Iridio/química , Sustancias Luminiscentes/química , Mediciones Luminiscentes/métodos , Animales , Técnicas Biosensibles/métodos , Enzimas Reparadoras del ADN/análisis , Enzimas Reparadoras del ADN/metabolismo , ADN Polimerasa Dirigida por ADN/análisis , ADN Polimerasa Dirigida por ADN/metabolismo , Endonucleasas/análisis , Endonucleasas/metabolismo , Exonucleasas/análisis , Exonucleasas/metabolismo , Humanos , Péptido Hidrolasas/análisis , Péptido Hidrolasas/metabolismo
10.
Ann Bot ; 119(1): 95-107, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28040673

RESUMEN

BACKGROUND AND AIMS: Anthosachne Steudel is a group of allopolyploid species that was derived from hexaploidization between the Asian StY genome Roegneria entity and the Australasia W genome Australopyrum species. Polyploidization and apomixis contribute to taxonomic complexity in Anthosachne Here, a study is presented on the phylogeny and evolutionary history of Anthosachne australasica The aims are to demonstrate the process of polyploidization events and to explore the differentiation patterns of the St genome following geographic isolation. METHODS: Chloroplast rbcL and trnH-psbA and nuclear Acc1 gene sequences of 60 Anthosachne taxa and nine Roegneria species were analysed with those of 33 diploid taxa representing 20 basic genomes in Triticeae. The phylogenetic relationships were reconstructed. A time-calibrated phylogeny was generated to estimate the evolutionary history of A. australasica Nucleotide diversity patterns were used to assess the divergence within A. australasica and between Anthosachne and its putative progenitors. KEY RESULTS: Three homoeologous copies of the Acc1 sequences from Anthosachne were grouped with the Acc1 sequences from Roegneria, Pseudoroegneria, Australopyrum, Dasypyrum and Peridictyon The chloroplast sequences of Anthosachne were clustered with those from Roegneria and Pseudoroegneria Divergence time for Anthosachne was dated to 4·66 million years ago (MYA). The level of nucleotide diversity in Australasian Anthosachne was higher than that in continental Roegneria A low level of genetic differentiation within the A. australasica complex was found. CONCLUSIONS: Anthosachne originated from historical hybridization between Australopyrum species and a Roegneria entity colonized from Asia to Australasia via South-east Asia during the late Miocene. The St lineage served as the maternal donor during the speciation of Anthosachne A contrasting pattern of population genetic structure exists in the A. australasica complex. Greater diversity in island Anthosachne compared with continental Roegneria might be associated with mutation, polyploidization, apomixis and expansion. It is reasonable to consider that A. australasica var. scabra and A. australasica var. plurinervisa should be included in the A. australasica complex.


Asunto(s)
Genoma de Planta/genética , Poaceae/genética , Secuencia de Bases , ADN de Cloroplastos/genética , ADN de Cloroplastos/aislamiento & purificación , ADN de Plantas/genética , ADN de Plantas/aislamiento & purificación , Genes de Plantas/genética , Variación Genética/genética , Filogenia , Fitomejoramiento , Análisis de Secuencia de ADN
11.
Anal Bioanal Chem ; 408(24): 6711-7, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27457102

RESUMEN

A label-free fluorescence assay has been developed for sensitive and selective detection of adenosine triphosphate (ATP) by using poly(thymine) (poly T)-templated copper nanoparticles (CuNPs) as fluorescent indicator. In our design, ATP aptamer was split into two fragments, both of which were elongated with poly T strands that can be utilized as efficient template for the formation of copper nanoparticles through the reduction of copper ions by sodium ascorbate. In the presence of ATP, the two split aptamers could be dragged to form aptamer-ATP aptamer complex, which drew the poly T strands close to each other and induced a remarkable fluorescence enhancement of poly T-templated CuNPs. Thus, an elevated fluorescence enhancement of poly T-templated CuNPs was obtained with the increase in ATP concentration. Under optimized conditions, a good linear range for ATP detection was realized from 100 nM to 100 µM with a detection limit of 10.29 nM. In addition, the application of this biosensing system in complex biological matrix was demonstrated with satisfactory results. This assay provided a simple, label-free, cost-effective, and sensitive platform for the detection of ATP.


Asunto(s)
Adenosina Trifosfato/análisis , Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Cobre/química , Colorantes Fluorescentes/química , Nanopartículas del Metal/química , Timina/análogos & derivados , Células A549 , Humanos , Límite de Detección , Espectrometría de Fluorescencia/métodos
12.
BMC Plant Biol ; 15: 179, 2015 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-26164196

RESUMEN

BACKGROUND: Hybridization and polyploidization can be major mechanisms for plant evolution and speciation. Thus, the process of polyploidization and evolutionary history of polyploids is of widespread interest. The species in Elymus L. sensu lato are allopolyploids that share a common St genome from Pseudoroegneria in different combinations with H, Y, P, and W genomes. But how the St genome evolved in the Elymus s. l. during the hybridization and polyploidization events remains unclear. We used nuclear and chloroplast DNA-based phylogenetic analyses to shed some light on this process. RESULTS: The Maximum likelihood (ML) tree based on nuclear ribosomal internal transcribed spacer region (nrITS) data showed that the Pseudoroegneria, Hordeum and Agropyron species served as the St, H and P genome diploid ancestors, respectively, for the Elymus s. l. polyploids. The ML tree for the chloroplast genes (matK and the intergenic region of trnH-psbA) suggests that the Pseudoroegneria served as the maternal donor of the St genome for Elymus s. l. Furthermore, it suggested that Pseudoroegneria species from Central Asia and Europe were more ancient than those from North America. The molecular evolution in the St genome appeared to be non-random following the polyploidy event with a departure from the equilibrium neutral model due to a genetic bottleneck caused by recent polyploidization. CONCLUSION: Our results suggest the ancient common maternal ancestral genome in Elymus s. l. is the St genome from Pseudoroegneria. The evolutionary differentiation of the St genome in Elymus s. l. after rise of this group may have multiple causes, including hybridization and polyploidization. They also suggest that E. tangutorum should be treated as C. dahurica var. tangutorum, and E. breviaristatus should be transferred into Campeiostachys. We hypothesized that the Elymus s. l. species origined in Central Asia and Europe, then spread to North America. Further study of intraspecific variation may help us evaluate our phylogenetic results in greater detail and with more certainty.


Asunto(s)
Evolución Biológica , ADN de Plantas/genética , Elymus/genética , Proteínas de Plantas/genética , Núcleo Celular/genética , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , ADN de Cloroplastos/genética , ADN de Cloroplastos/metabolismo , ADN de Plantas/metabolismo , Elymus/metabolismo , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/metabolismo , Análisis de Secuencia de ADN
13.
Cardiology ; 130(4): 242-8, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25824645

RESUMEN

OBJECTIVE: The aim of our study was to assess the effects of altered salt and potassium intake on urinary renalase and serum dopamine levels in humans. METHODS: Forty-two subjects (28­65 years of age) were selected from a rural community of northern China. All subjects were sequentially maintained on a low-salt diet for 7 days (3.0 g/day of NaCl), a high-salt diet for an additional 7 days (18.0 g/day of NaCl), and a high-salt diet with potassium supplementation for a final 7 days (18.0 g/day of NaCl + 4.5 g/day of KCl). RESULTS: Urinary renalase excretions were significantly higher during the high-salt diet intervention than during the low-salt diet. During high-potassium intake, urinary renalase excretions were not significantly different from the high-salt diet, whereas they were significantly higher than the low-salt levels. Serum dopamine levels exhibited similar trends across the interventions. Additionally, a significant positive relationship was observed between the urine renalase and serum dopamine among the different dietary interventions. Also, 24-hour urinary sodium excretion positively correlated with urine renalase and serum dopamine in the whole population. CONCLUSIONS: The present study indicates that dietary salt intake and potassium supplementation increase urinary renalase and serum dopamine levels in Chinese subjects.


Asunto(s)
Presión Sanguínea/fisiología , Dopamina/sangre , Monoaminooxidasa/orina , Potasio/administración & dosificación , Cloruro de Sodio Dietético/administración & dosificación , Adulto , Anciano , Pueblo Asiatico , China , Femenino , Humanos , Hipertensión/prevención & control , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Población Rural , Cloruro de Sodio Dietético/orina
14.
Materials (Basel) ; 17(16)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39203224

RESUMEN

Carbon dioxide corrosion is a pervasive issue in pipelines and the petroleum industry, posing substantial risks to equipment safety and longevity. Accurate prediction of corrosion rates and severity is essential for effective material selection and equipment maintenance. This paper begins by addressing the limitations of traditional corrosion prediction methods and explores the application of machine learning algorithms in CO2 corrosion prediction. Conventional models often fail to capture the complex interactions among multiple factors, resulting in suboptimal prediction accuracy, limited adaptability, and poor generalization. To overcome these limitations, this study systematically organized and analyzed the data, performed a correlation analysis of the data features, and examined the factors influencing corrosion. Subsequently, prediction models were developed using six algorithms: Random Forest (RF), K-Nearest Neighbors (KNN), Gradient Boosting Decision Tree (GBDT), Support Vector Machine (SVM), XGBoost, and LightGBM. The results revealed that SVM exhibited the lowest performance on both training and test sets, while RF achieved the best results with R2 values of 0.92 for the training set and 0.88 for the test set. In the classification of corrosion severity, RF, LightGBM, SVM, and KNN were utilized, with RF demonstrating superior performance, achieving an accuracy of 99% and an F1-score of 0.99. This study highlights that machine learning algorithms, particularly Random Forest, offer substantial potential for predicting and classifying CO2 corrosion. These algorithms provide innovative approaches and valuable insights for practical applications, enhancing predictive accuracy and operational efficiency in corrosion management.

15.
Discov Nano ; 19(1): 144, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39251461

RESUMEN

The exploration of targeted therapy has proven to be a highly promising avenue in the realm of drug development research. The human body generates a substantial amount of free radicals during metabolic processes, and if not promptly eliminated, these free radicals can lead to oxidative stress, disrupting homeostasis and potentially contributing to chronic diseases and cancers. Before the development of contemporary medicine with synthetic pharmaceuticals and antioxidants, there was a long-standing practice of employing raw, natural ingredients to cure a variety of illnesses. This practice persisted even after the active antioxidant molecules were known. The ability of natural antioxidants to neutralise excess free radicals in the human body and so prevent and cure a wide range of illnesses. The term "natural antioxidant" refers to compounds derived from plants or other living organisms that have the ability to control the production of free radicals, scavenge them, stop free radical-mediated chain reactions, and prevent lipid peroxidation. These compounds have a strong potential to inhibit oxidative stress. Phytochemicals (antioxidants) derived from plants, such as polyphenols, carotenoids, vitamins, and others, are central to the discussion of natural antioxidants. Not only may these chemicals increase endogenous antioxidant defenses, affect communication cascades, and control gene expression, but they have also shown strong free radical scavenging properties. This study comprehensively summarizes the primary classes of natural antioxidants found in different plant and animal source that contribute to the prevention and treatment of diseases. Additionally, it outlines the research progress and outlines future development prospects. These discoveries not only establish a theoretical groundwork for pharmacological development but also present inventive ideas for addressing challenges in medical treatment.

16.
ACS Nano ; 18(4): 3814-3825, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38230632

RESUMEN

Nanomaterials with enzyme-mimicking functions, termed nanozymes, offer attractive opportunities for biocatalysis and biomedicine. However, manipulating nanozyme selectivity poses an insurmountable hurdle. Here, we propose the concept of an energy-governed electron lock that controls electron transfer between nanozyme and substrates to achieve selectivity manipulation of enzyme-like catalysis. An electron lock can be constructed and opened, via modulating the nanozyme's electron energy to match the energy barrier of enzymatic reactions. An iron-doped carbon dot (FeCD) nanozyme with easy-to-regulate electron energy is selected as a proof of concept. Through regulating the conduction band which dominates electron energy, activatable oxidase and selective peroxidase (POD) with substrate affinity 123-fold higher than that of natural horseradish peroxidase (HRP) is achieved. Furthermore, while maintaining selectivity, FeCDs exhibit catalytic kinetics comparable to that of HRP upon transforming photons into electrons. Superior selectivity, efficient catalysis, and undetectable biotoxicity energize FeCDs as potent targeted drugs on antibiotic-resistant bacterial abscesses. An electron lock provides a robust strategy to manipulate selectivity toward advanced nanozymes.


Asunto(s)
Electrones , Peroxidasas , Peroxidasa , Peroxidasa de Rábano Silvestre , Catálisis
17.
Heliyon ; 10(5): e26441, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38455566

RESUMEN

Reinjecting produced methane offers cost-efficiency and environmental benefits for enhances oil recovery. High minimum miscibility pressure (MMP) in methane-oil systems poses a challenge. To overcome this, researchers are increasingly focusing on using surfactants to reduce MMP, thus enhancing the effectiveness of methane injections for oil recovery. This study investigated the impact of pressure and temperature on the equilibrium interfacial tension of the CH4+n-decane system using molecular dynamics simulations and the vanishing interfacial tension technique. The primary goal was to assess the potential of surfactants in lowering MMP. Among four tested surfactants, ME-6 exhibited the most promise by reducing MMP by 14.10% at 373 K. Key findings include that the addition of ME-6 enriching CH4 at the interface, enhancing its solubility in n-decane, improving n-decane diffusion capacity, CH4 weakens n-decane interactions and strengthens its own interaction with n-decane. As the difference in interactions of n-decane with ME-6's ends decreases, the system trends towards a mixed phase. This research sets the stage for broader applications of mixed-phase methane injection in reservoirs, with the potential for reduced gas flaring and environmental benefits.

18.
Sci Rep ; 14(1): 6046, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38472299

RESUMEN

In the process of developing tight oil and gas reservoirs, multistage fractured horizontal wells (NFHWs) can greatly increase the production rate, and the optimal design of its fracturing parameters is also an important means to further increase the production rate. Accurate production prediction is essential for the formulation of effective development strategies and development plans before and during project execution. In this study, a novel workflow incorporating machine learning (ML) and particle swarm optimization algorithms (PSO) is proposed to predict the production rate of multi-stage fractured horizontal wells in tight reservoirs and optimize the fracturing parameters. The researchers conducted 10,000 numerical simulation experiments to build a complete training and validation dataset, based on which five machine learning production prediction models were developed. As input variables for yield prediction, eight key factors affecting yield were selected. The results of the study show that among the five models, the random forest (RF) model best establishes the mapping relationship between feature variables and yield. After verifying the validity of the Random Forest-based yield prediction model, the researchers combined it with the particle swarm optimization algorithm to determine the optimal combination of fracturing parameters under the condition of maximizing the net present value. A hybrid model, called ML-PSO, is proposed to overcome the limitations of current production forecasting studies, which are difficult to maximize economic returns and optimize the fracturing scheme based on operator preferences (e.g., target NPV). The designed workflow can not only accurately and efficiently predict the production of multi-stage fractured horizontal wells in real-time, but also be used as a parameter selection tool to optimize the fracture design. This study promotes data-driven decision-making for oil and gas development, and its tight reservoir production forecasts provide the basis for accurate forecasting models for the oil and gas industry.

19.
Cell Death Discov ; 10(1): 345, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085218

RESUMEN

Necrotizing enterocolitis (NEC) involves intestinal epithelial damage and inflammatory response and is associated with high morbidity and mortality in infants. To improve therapeutic prospects, elucidating underlying molecular mechanisms of intestinal epithelial damage during NEC is of the essence. Poly (ADP-ribose) polymerase 1 (PARP1)-dependent parthanatos is a programmed inflammatory cell death. In the present study, the presence of parthanatos-associated proteins PARP1 and poly (ADP-ribose) (PAR), along with high expression of DNA damage-associated biomarkers, 8-hydroxy-2'-deoxyguanosine (8-OHdG) and phosphorylation of histone H2AX (γH2AX), were discovered in the intestinal tissues of NEC infants. Additionally, the upregulated expression of PARP1 and PAR in NEC intestinal tissues correlated distinctly with clinical indices indicative of NEC incidence and severity. Furthermore, we demonstrated that inhibiting the expression of parthanatos-associated proteins, by either pharmacological blockage using 3-aminobenzamide (3-AB), an inhibitor of PARP1, or genetic knockout using Parp1-deficient mice, resulted in substantial improvements in both histopathological severity scores associated with intestinal injury and inflammatory reactions. Moreover, in an in vitro NEC model, reactive oxygen species (ROS)-induced DNA damage promoted the formation of PAR and nuclear translocation of apoptosis-inducing factor (AIF), thus activating PARP1-dependent parthanatos in Caco-2 cells and human intestinal organoids. Our work verifies a previously unexplored role for parthanatos in intestinal epithelial damage during NEC and suggests that inhibition of parthanatos may serve as a potential therapeutic strategy for intervention of NEC.

20.
Mol Phylogenet Evol ; 69(3): 919-28, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23816902

RESUMEN

To estimate the origin and genomic relationships of the polyploid species within Elymus L. sensu lato, two unlinked single-copy nuclear gene (Acc1 and Pgk1) sequences of eighteen tetraploids (StH and StY genomes) and fourteen hexaploids (StStH, StYP, StYH, and StYW genomes) were analyzed with those of 35 diploid taxa representing 18 basic genomes in Triticeae. Sequence and phylogenetic analysis suggested that: (1) the St, H, W, and P genomes were donated by Pseudoroegneria, Hordeum, Australopyrum, and Agropyron, respectively, while the Y genome is closely related to the Xp genome in Peridictyon sanctum; (2) different hexaploid Elymus s.l. species may derived their StY genome from different StY genome tetraploid species via independent origins; (3) due to incomplete lineage sorting and/or hybridization events, the genealogical conflict between the two gene trees suggest introgression involving some Elymus s.l. species, Pseudoroegneria, Agropyron and Aegilops/Triticum; (4) it is reasonable to recognize the StH genome species as Elymus sensu stricto, the StY genome species as Roegneria, the StYW genome species as Anthosachne, the StYH genome species as Campeiostachys, and the StYP genome species as Kengyilia. The occurrence of multiple origin and introgression could account for the rich diversity and ecological adaptation of Elymus s.l. species.


Asunto(s)
Elymus/clasificación , Evolución Molecular , Genoma de Planta , Filogenia , Teorema de Bayes , Núcleo Celular/genética , ADN de Plantas/genética , Elymus/genética , Funciones de Verosimilitud , Poliploidía , Alineación de Secuencia , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA