RESUMEN
The development of the cerebral cortex involves a series of dynamic events, including cell proliferation and migration, which rely on the motor protein dynein and its regulators NDE1 and NDEL1. While the loss of function in NDE1 leads to microcephaly-related malformations of cortical development (MCDs), NDEL1 variants have not been detected in MCD patients. Here, we identified two patients with pachygyria, with or without subcortical band heterotopia (SBH), carrying the same de novo somatic mosaic NDEL1 variant, p.Arg105Pro (p.R105P). Through single-cell RNA sequencing and spatial transcriptomic analysis, we observed complementary expression of Nde1/NDE1 and Ndel1/NDEL1 in neural progenitors and post-mitotic neurons, respectively. Ndel1 knockdown by in utero electroporation resulted in impaired neuronal migration, a phenotype that could not be rescued by p.R105P. Remarkably, p.R105P expression alone strongly disrupted neuronal migration, increased the length of the leading process, and impaired nucleus-centrosome coupling, suggesting a failure in nucleokinesis. Mechanistically, p.R105P disrupted NDEL1 binding to the dynein regulator LIS1. This study identifies the first lissencephaly-associated NDEL1 variant and sheds light on the distinct roles of NDE1 and NDEL1 in nucleokinesis and MCD pathogenesis.
Asunto(s)
Lisencefalia , Humanos , Lisencefalia/genética , Movimiento Celular/genética , Proliferación Celular , Corteza Cerebral , Dineínas/genética , Proteínas Portadoras , Proteínas Asociadas a Microtúbulos/genéticaRESUMEN
OBJECTIVES: To evaluate the methodological quality and diagnostic accuracy of MRI-based radiomic studies predicting O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status in gliomas. METHODS: PubMed Medline, EMBASE, and Web of Science were searched to identify MRI-based radiomic studies on MGMT methylation in gliomas published until December 31, 2022. Three raters evaluated the study methodological quality with Radiomics Quality Score (RQS, 16 components) and Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis Or Diagnosis (TRIPOD, 22 items) scales. Risk of bias and applicability concerns were assessed with QUADAS-2 tool. A meta-analysis was performed to estimate the pooled area under the curve (AUC) and to assess inter-study heterogeneity. RESULTS: We included 26 studies, published from 2016. The median RQS total score was 8 out of 36 (22%, range 8-44%). Thirteen studies performed external validation. All studies reported AUC or accuracy, but only 4 (15%) performed calibration and decision curve analysis. No studies performed phantom analysis, cost-effectiveness analysis, and prospective validation. The overall TRIPOD adherence score was between 50% and 70% in 16 studies and below 50% in 10 studies. The pooled AUC was 0.78 (95% CI, 0.73-0.83, I2 = 94.1%) with a high inter-study heterogeneity. Studies with external validation and including only WHO-grade IV gliomas had significantly lower AUC values (0.65; 95% CI, 0.57-0.73, p < 0.01). CONCLUSIONS: Study RQS and adherence to TRIPOD guidelines was generally low. Radiomic prediction of MGMT methylation status showed great heterogeneity of results and lower performances in grade IV gliomas, which hinders its current implementation in clinical practice. CLINICAL RELEVANCE STATEMENT: MGMT promoter methylation status appears to be variably correlated with MRI radiomic features; radiomic models are not sufficiently robust to be integrated into clinical practice to accurately predict MGMT promoter methylation status in patients with glioma before surgery. KEY POINTS: ⢠Adherence to the indications of TRIPOD guidelines was generally low, as was RQS total score. ⢠MGMT promoter methylation status prediction with MRI radiomic features provided heterogeneous diagnostic accuracy results across studies. ⢠Studies that included grade IV glioma only and performed external validation had significantly lower diagnostic accuracy than others.
Asunto(s)
Neoplasias Encefálicas , Metilación de ADN , Metilasas de Modificación del ADN , Enzimas Reparadoras del ADN , Glioma , Imagen por Resonancia Magnética , Regiones Promotoras Genéticas , Proteínas Supresoras de Tumor , Humanos , Glioma/diagnóstico por imagen , Glioma/genética , Enzimas Reparadoras del ADN/genética , Imagen por Resonancia Magnética/métodos , Metilasas de Modificación del ADN/genética , Proteínas Supresoras de Tumor/genética , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , RadiómicaRESUMEN
Magnetic resonance imaging (MRI) is the most sensitive technique for detecting inflammatory demyelinating lesions in multiple sclerosis (MS) and plays a crucial role in diagnosis and monitoring treatment effectiveness, and for predicting the disease course. In clinical practice, detection of MS lesions is mainly based on T2-weighted and contrast-enhanced T1-weighted sequences. Contrast-enhancing lesions (CEL) on T1-weighted sequences are related to (sub)acute inflammation, while new or enlarging T2 lesions reflect the permanent footprint from a previous acute inflammatory demyelinating event. These two types of MRI features provide redundant information, at least in regular monitoring of the disease. Due to the concern of gadolinium deposition after repetitive injections of gadolinium-based contrast agents (GBCAs), scientific organizations and regulatory agencies in Europe and North America have proposed that these contrast agents should be administered only if clinically necessary. In this article, we provide data on the mode of action of GBCAs in MS, the indications of the use of these agents in clinical practice, their value in MS for diagnostic, prognostic, and monitoring purposes, and their use in specific populations (children, pregnant women, and breast-feeders). We discuss imaging strategies that achieve the highest sensitivity for detecting CELs in compliance with the safety regulations established by different regulatory agencies. Finally, we will briefly discuss some alternatives to the use of GBCA for detecting blood-brain barrier disruption in MS lesions. CLINICAL RELEVANCE STATEMENT: Although use of GBCA at diagnostic workup of suspected MS is highly valuable for diagnostic and prognostic purposes, their use in routine monitoring is not mandatory and must be reduced, as detection of disease activity can be based on the identification of new or enlarging lesions on T2-weighted images. KEY POINTS: ⢠Both the EMA and the FDA state that the use of GBCA in medicine should be restricted to clinical scenarios in which the additional information offered by the contrast agent is required. ⢠The use of GBCA is generally recommended in the diagnostic workup in subjects with suspected MS and is generally not necessary for routine monitoring in clinical practice. ⢠Alternative MRI-based approaches for detecting acute focal inflammatory MS lesions are not yet ready to be used in clinical practice.
Asunto(s)
Medios de Contraste , Esclerosis Múltiple , Embarazo , Niño , Humanos , Femenino , Esclerosis Múltiple/diagnóstico , Gadolinio , Imagen por Resonancia Magnética/métodos , Progresión de la Enfermedad , Encéfalo/patologíaRESUMEN
PURPOSE: MRI has an important role in diagnosing pilocytic astrocytoma and post-surgical follow-up since the surgical approach has a leading role in its treatment. The purpose of our study is to provide an overview of the typical and atypical MRI findings in a series of pediatric patients with isolated-not NF1-related-pilocytic astrocytomas and to correlate specific MRI patterns with clinical variables. METHODS: This is a cross-sectional retrospective study providing the analysis of several clinical and neuroradiological findings from a cohort of pediatric pilocytic astrocytoma, starting from the data collected in the Fondazione IRCCS Istituto Neurologico Carlo Besta (FINCB) internal Cancer Registry during an 11-year time period (January 2008-January 2019). RESULTS: Fifty-six patients were included in the study. Median age at diagnosis was 9.4 years; a slight female prevalence was noticed (m/f ratio 44.6%/55.4%). The majority of pPAs had well-defined contours: 51 (91.1%), 47 (88.7%) were hypointense on T1-wi, all of them were hyperintense on T2-wi, 46 (90.2%) were hyperintense on FLAIR, and 48 (85.7%) were heterogeneous on T1-wi and T2-wi sequences. We found positive correlation between pPAs location and age (r = 0.017), and small degree of connection between pPAs location and gender (Cramer's V = 0.268). CONCLUSIONS: We presented typical and atypical pPAs MRI findings. Age and tumor location were positevely correlated, while degree of connection between gender and pPAs location was small. All of this may aid clinicians, most of all neuroradiologists, neurosurgeons, and neurologists in proper diagnoses and follow-up of these specific patient population.
RESUMEN
The methylation of the O6-methylguanine-DNA methyltransferase (MGMT) promoter is a molecular marker associated with a better response to chemotherapy in patients with glioblastoma (GB). Standard pre-operative magnetic resonance imaging (MRI) analysis is not adequate to detect MGMT promoter methylation. This study aims to evaluate whether the radiomic features extracted from multiple tumor subregions using multiparametric MRI can predict MGMT promoter methylation status in GB patients. This retrospective single-institution study included a cohort of 277 GB patients whose 3D post-contrast T1-weighted images and 3D fluid-attenuated inversion recovery (FLAIR) images were acquired using two MRI scanners. Three separate regions of interest (ROIs) showing tumor enhancement, necrosis, and FLAIR hyperintensities were manually segmented for each patient. Two machine learning algorithms (support vector machine (SVM) and random forest) were built for MGMT promoter methylation prediction from a training cohort (196 patients) and tested on a separate validation cohort (81 patients), based on a set of automatically selected radiomic features, with and without demographic variables (i.e., patients' age and sex). In the training set, SVM based on the selected radiomic features of the three separate ROIs achieved the best performances, with an average of 83.0% (standard deviation: 5.7%) for accuracy and 0.894 (0.056) for the area under the curve (AUC) computed through cross-validation. In the test set, all classification performances dropped: the best was obtained by SVM based on the selected features extracted from the whole tumor lesion constructed by merging the three ROIs, with 64.2% (95% confidence interval: 52.8-74.6%) accuracy and 0.572 (0.439-0.705) for AUC. The performances did not change when the patients' age and sex were included with the radiomic features into the models. Our study confirms the presence of a subtle association between imaging characteristics and MGMT promoter methylation status. However, further verification of the strength of this association is needed, as the low diagnostic performance obtained in this validation cohort is not sufficiently robust to allow clinically meaningful predictions.
Asunto(s)
Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagen , Glioblastoma/genética , Radiómica , Estudios Retrospectivos , Imagen por Resonancia Magnética , Algoritmos , O(6)-Metilguanina-ADN Metiltransferasa , Metilasas de Modificación del ADN/genética , Proteínas Supresoras de Tumor/genética , Enzimas Reparadoras del ADN/genéticaRESUMEN
OBJECTIVE: Sporadic Creutzfeldt-Jakob disease (sCJD) comprises several subtypes as defined by genetic and prion protein characteristics, which are associated with distinct clinical and pathological phenotypes. To date, no clinical test can reliably diagnose the subtype. We established two procedures for the antemortem diagnosis of sCJD subtype using diffusion magnetic resonance imaging (MRI). METHODS: MRI of 1,458 patients referred to the National Prion Disease Pathology Surveillance Center were collected through its consultation service. One neuroradiologist blind to the diagnosis scored 12 brain regions and generated a lesion profile for each MRI scan. We selected 487 patients with autopsy-confirmed diagnosis of "pure" sCJD subtype and at least one positive diffusion MRI examination. We designed and tested two data-driven procedures for subtype diagnosis: the first procedure-prion subtype classification algorithm with MRI (PriSCA_MRI)-uses only MRI examinations; the second-PriSCA_MRI + Gen-includes knowledge of the prion protein codon 129 genotype, a major determinant of sCJD subtypes. Both procedures were tested on the first MRI and the last MRI follow-up. RESULTS: PriSCA_MRI classified the 3 most prevalent subtypes with 82% accuracy. PriSCA_MRI + Gen raised the accuracy to 89% and identified all subtypes. Individually, the 2 most prevalent sCJD subtypes, MM1 and VV2, were diagnosed with sensitivities up to 95 and 97%, respectively. The performances of both procedures did not change in 168 patients with longitudinal MRI studies when the last examination was used. INTERPRETATION: This study provides the first practical algorithms for antemortem diagnosis of sCJD subtypes. MRI diagnosis of subtype is likely to be attainable at early disease stages to prognosticate clinical course and design future therapeutic trials. ANN NEUROL 2021;89:560-572.
Asunto(s)
Encéfalo/diagnóstico por imagen , Síndrome de Creutzfeldt-Jakob/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética , Proteínas Priónicas/genética , Anciano , Síndrome de Creutzfeldt-Jakob/clasificación , Síndrome de Creutzfeldt-Jakob/genética , Femenino , Genotipo , Humanos , Masculino , Persona de Mediana EdadRESUMEN
The use of fotemustine (FTM) has been authorized in certain countries for the treatment of recurrent high-grade gliomas (HGG) after Stupp therapy. However, to the best of our knowledge, no studies have assessed changes in magnetic resonance imaging (MRI) during treatment with FTM monotherapy. The aim of the present study was to assess the neuroradiological findings in a cohort of patients with recurrent HGG treated with FTM monotherapy. Patients with HGG already undergoing the Stupp protocol were retrospectively included. MRIs (pre- and post-FTM treatment) were analyzed by two neuroradiologists in consensus: Volume and diffusion values of the contrast-enhanced component were measured on T1-weighted volumetric sequences after gadolinium injection and on apparent diffusion coefficient (ADC) maps, respectively. A total of 19 patients [median age, 49 years; interquartile range (IQR), 43-57 years] were included, 17 of whom had glioblastoma and 2 had astrocytoma isocitrate dehydrogenase-mutated grade 4. The median duration of FTM therapy was 4 months (IQR, 2-6 months). The median tumor volume measured on the contrast-enhanced component was 2,216 mm3 (IQR, 768-13,169 mm3) at baseline and 9,217 mm3 (IQR, 3,455-16,697 mm3) at the end of treatment, with a median change of +38% (IQR, -45-+574%). A total of seven patients showed a volume decrease. ADC value analysis of the enhancement area demonstrated no significant difference between the pre- and the post-FTM treatment periods (P=0.36); however, in three patients, the decreases in ADC levels were particularly marked. In conclusion, the present study described a series of patients with recurrent HGG treated with FTM in monotherapy, demonstrating a prevalent increase in lesion enhancement and three cases of marked restrictions on diffusion-weighted imaging. Further prospective studies are required to corroborate such preliminary results.
RESUMEN
Overall quality of radiomics research has been reported as low in literature, which constitutes a major challenge to improve. Consistent, transparent, and accurate reporting is critical, which can be accomplished with systematic use of reporting guidelines. The CheckList for EvaluAtion of Radiomics research (CLEAR) was previously developed to assist authors in reporting their radiomic research and to assist reviewers in their evaluation. To take full advantage of CLEAR, further explanation and elaboration of each item, as well as literature examples, may be useful. The main goal of this work, Explanation and Elaboration with Examples for CLEAR (CLEAR-E3), is to improve CLEAR's usability and dissemination. In this international collaborative effort, members of the European Society of Medical Imaging Informatics-Radiomics Auditing Group searched radiomics literature to identify representative reporting examples for each CLEAR item. At least two examples, demonstrating optimal reporting, were presented for each item. All examples were selected from open-access articles, allowing users to easily consult the corresponding full-text articles. In addition to these, each CLEAR item's explanation was further expanded and elaborated. For easier access, the resulting document is available at https://radiomic.github.io/CLEAR-E3/ . As a complementary effort to CLEAR, we anticipate that this initiative will assist authors in reporting their radiomics research with greater ease and transparency, as well as editors and reviewers in reviewing manuscripts.Relevance statement Along with the original CLEAR checklist, CLEAR-E3 is expected to provide a more in-depth understanding of the CLEAR items, as well as concrete examples for reporting and evaluating radiomic research.Key points⢠As a complementary effort to CLEAR, this international collaborative effort aims to assist authors in reporting their radiomics research, as well as editors and reviewers in reviewing radiomics manuscripts.⢠Based on positive examples from the literature selected by the EuSoMII Radiomics Auditing Group, each CLEAR item explanation was further elaborated in CLEAR-E3.⢠The resulting explanation and elaboration document with examples can be accessed at https://radiomic.github.io/CLEAR-E3/ .
Asunto(s)
Lista de Verificación , Humanos , Europa (Continente) , Radiología/normas , Diagnóstico por Imagen/normas , RadiómicaRESUMEN
In adrenoleukodystrophy (ALD), contrast enhancement (CE) is a disease activity marker, but there is uncertainty about the optimal delay, if any, between contrast injection and magnetic resonance imaging (MRI) acquisition to avoid false-negative results. We acquired axial two-dimensional (2D) and three-dimensional (3D) T1-weighted gradient-echo every 6 min from 0 to 36 min after contrast administration (gadobutrol 0.1 mmol/kg) in an ALD patient with enlarging white matter lesions and progressive neuropsychological symptoms, using a 3-T magnet. The image signal over time was qualitatively assessed and measured in two regions of interest. On 3D sequences, no definite CE was appreciated, whereas on 2D sequences, CE was noticed after 6 min and definitely evident after 12 min, when 73% of the maximum signal intensity was measured. In ALD subjects, contrast-enhanced 2D T1-weighted gradient-echo sequences acquired at least 10 min after contrast injection may be considered to reduce false negative results.Relevance statementOur report is the first attempt to find an optimal delay between contrast administration and T1-weighted acquisition in cALD patients in order to correctly detect disease activity and avoid false negative results.Key points⢠The optimal time between contrast injection and image acquisition for MRI of adrenoleukodystrophy is unknown.⢠Contrast enhancement predicts adrenoleukodystrophy progression and could help patient's selection for the therapy.⢠We acquired two post-contrast T1-GRE-2D/3D sequences several times to find the best injection-time.⢠T1-weighted 2D GRE resulted more sensitive than T1-weighted 3D GRE even after long intervals from injection.⢠A delay of about 10 min may minimize false negatives.
Asunto(s)
Adrenoleucodistrofia , Medios de Contraste , Humanos , Adrenoleucodistrofia/diagnóstico por imagen , Imagen por Resonancia Magnética/métodosRESUMEN
INTRODUCTION: Approximately 25%-30% of patients with non-small cell lung cancer (NSCLC) develop central nervous system (CNS) metastases during the course of the disease; this percentage is higher in patients with epidermal growth factor receptor (EGFR) mutations. Leptomeningeal metastases, infrequent in the advanced setting, have a particularly dismal prognosis. Osimertinib, a third-generation EGFR inhibitor, can provide effective and durable response in this setting. CASE DESCRIPTION: We present a 62-year-old man with progressive vomiting, headache, short-term memory impairment, and left lower limb hyposthenia. Computed tomography (CT) showed bilateral lung nodules, multiple lymphadenopathies, liver and bone metastases, and CNS and leptomeningeal dissemination, including multiple parenchymal nodules located at supra- and infratentorial brain. Bone needle biopsy documented TTF1+ lung adenocarcinoma. Whole brain radiotherapy (WBRT) and symptomatic treatments were started. Next-generation sequencing reported deletion of exon 19 of EGFR and mutation 8 of TP53. Osimertinib 80 mg was promptly started and WBRT interrupted. Some days after the patient experienced repetitive seizures and neurologic worsening, antiepileptic drugs and dexamethasone were implemented, with gradual improvement. Radiologic evaluation, including brain MRI and thorax-abdominal CT, showed partial response on CNS as well as extracranial sites, which was sustained. CONCLUSIONS: First-line treatment with osimertinib can be safe and effective in EGFR-mutated NSCLC even in presence of multiple negative predictive factors (poor Performance Status, diffuse leptomeningeal involvement, TP53 comutation), suggesting that deferring local treatments can be feasible in this setting, allowing the patient to maintain a good quality of life.