Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Bioinformatics ; 40(4)2024 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-38608190

RESUMEN

MOTIVATION: Deep-learning models are transforming biological research, including many bioinformatics and comparative genomics algorithms, such as sequence alignments, phylogenetic tree inference, and automatic classification of protein functions. Among these deep-learning algorithms, models for processing natural languages, developed in the natural language processing (NLP) community, were recently applied to biological sequences. However, biological sequences are different from natural languages, such as English, and French, in which segmentation of the text to separate words is relatively straightforward. Moreover, biological sequences are characterized by extremely long sentences, which hamper their processing by current machine-learning models, notably the transformer architecture. In NLP, one of the first processing steps is to transform the raw text to a list of tokens. Deep-learning applications to biological sequence data mostly segment proteins and DNA to single characters. In this work, we study the effect of alternative tokenization algorithms on eight different tasks in biology, from predicting the function of proteins and their stability, through nucleotide sequence alignment, to classifying proteins to specific families. RESULTS: We demonstrate that applying alternative tokenization algorithms can increase accuracy and at the same time, substantially reduce the input length compared to the trivial tokenizer in which each character is a token. Furthermore, applying these tokenization algorithms allows interpreting trained models, taking into account dependencies among positions. Finally, we trained these tokenizers on a large dataset of protein sequences containing more than 400 billion amino acids, which resulted in over a 3-fold decrease in the number of tokens. We then tested these tokenizers trained on large-scale data on the above specific tasks and showed that for some tasks it is highly beneficial to train database-specific tokenizers. Our study suggests that tokenizers are likely to be a critical component in future deep-network analysis of biological sequence data. AVAILABILITY AND IMPLEMENTATION: Code, data, and trained tokenizers are available on https://github.com/technion-cs-nlp/BiologicalTokenizers.


Asunto(s)
Algoritmos , Biología Computacional , Aprendizaje Profundo , Procesamiento de Lenguaje Natural , Biología Computacional/métodos , Proteínas/química , Alineación de Secuencia/métodos , Análisis de Secuencia de Proteína/métodos
2.
Nucleic Acids Res ; 51(W1): W232-W236, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37177997

RESUMEN

In the last decade, advances in sequencing technology have led to an exponential increase in genomic data. These new data have dramatically changed our understanding of the evolution and function of genes and genomes. Despite improvements in sequencing technologies, identifying contaminated reads remains a complex task for many research groups. Here, we introduce GenomeFLTR, a new web server to filter contaminated reads. Reads are compared against existing sequence databases from various representative organisms to detect potential contaminants. The main features implemented in GenomeFLTR are: (i) automated updating of the relevant databases; (ii) fast comparison of each read against the database; (iii) the ability to create user-specified databases; (iv) a user-friendly interactive dashboard to investigate the origin and frequency of the contaminations; (v) the generation of a contamination-free file. Availability: https://genomefltr.tau.ac.il/.


Asunto(s)
Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN , Genoma/genética , Bases de Datos de Ácidos Nucleicos , Programas Informáticos
3.
Front Plant Sci ; 13: 1024405, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388586

RESUMEN

Type III effectors are proteins injected by Gram-negative bacteria into eukaryotic hosts. In many plant and animal pathogens, these effectors manipulate host cellular processes to the benefit of the bacteria. Type III effectors are secreted by a type III secretion system that must "classify" each bacterial protein into one of two categories, either the protein should be translocated or not. It was previously shown that type III effectors have a secretion signal within their N-terminus, however, despite numerous efforts, the exact biochemical identity of this secretion signal is generally unknown. Computational characterization of the secretion signal is important for the identification of novel effectors and for better understanding the molecular translocation mechanism. In this work we developed novel machine-learning algorithms for characterizing the secretion signal in both plant and animal pathogens. Specifically, we represented each protein as a vector in high-dimensional space using Facebook's protein language model. Classification algorithms were next used to separate effectors from non-effector proteins. We subsequently curated a benchmark dataset of hundreds of effectors and thousands of non-effector proteins. We showed that on this curated dataset, our novel approach yielded substantially better classification accuracy compared to previously developed methodologies. We have also tested the hypothesis that plant and animal pathogen effectors are characterized by different secretion signals. Finally, we integrated the novel approach in Effectidor, a web-server for predicting type III effector proteins, leading to a more accurate classification of effectors from non-effectors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA