Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Neuroinflammation ; 21(1): 85, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582897

RESUMEN

Homer1a and A2 astrocytes are involved in the regulation of inflammation induced by intracerebral hemorrhage (ICH). However, there is no anticipated treatment strategy based on the anti-inflammatory effect of Homer1a and A2 astrocytes. Here, we successfully induced A2 astrocytes in vitro, and then we report an efficient method to prepare Homer1a+ EVs derived from A2 astrocytes which making it more stable, safe, and targetable to injured neurons. Homer1a+ EVs promotes the conversion of A1 to A2 astrocytes in ICH mice. Homer1a+ EVs inhibits activation and nuclear translocation of NF-κB, thereby regulating transcription of IL-17A in neurons. Homer1a+ EVs inhibits the RAGE/NF-κB/IL-17 signaling pathway and the binding ability of IL-17A: IL17-AR and RAGE: DIAPH1. In addition, Homer1a+ EVs ameliorates the pathology, behavior, and survival rate in GFAPCreHomer1fl/-Homer1a± and NestinCreRAGEfl/fl ICH mice. Our study provides a novel insight and potential for the clinical translation of Homer1a+ EVs in the treatment of ICH.


Asunto(s)
Vesículas Extracelulares , FN-kappa B , Ratones , Animales , FN-kappa B/metabolismo , Interleucina-17 , Hemorragia Cerebral/metabolismo , Transducción de Señal , Vesículas Extracelulares/metabolismo
2.
Pestic Biochem Physiol ; 195: 105536, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37666608

RESUMEN

The efficacy of insecticides is usually influenced by temperature. Insecticides can be divided into "positive", "negative" and "non-effect" temperature coefficient insecticides (TCI). To assess the temperature-dependent effect of tetrachlorantraniliprole (TET) on Plutella xylostella Linnaeus and to elucidate the mechanism of temperature affects TET toxicity, we determined the toxicity of TET against P. xylostella from 15 °C to 35 °C by leaf dipping method. Moreover, we compared the transcriptome data of the third-instar larvae treated by TET, chlorfenapyr (CHL, non-effect TCI), and the control group at 15, 25, 35 °C, respectively. The results showed that the toxicity of TET against P. xylostella increased with increasing temperature from 15 °C to 35 °C. A total of 21 differential expressed genes (DEGs) of detoxification enzymes were screened by RNA-seq, in which 10 up-regulated genes (3 UGTs, 2 GSTs, 5 P450s) may involve the positive temperature effect of TET, and their expression patterns were consistent with qPCR results. Furthermore, the enzyme activities of GSTs and UGTs significantly increased after TET was treated at 15 °C. Especially, the temperature coefficient (TC) of TET was significantly reduced mixed with UGTs enzyme inhibitor 5-NI. Overall, TET showed higher insecticidal activity with increasing temperature, in which detoxifying enzymes associated with regulation of the positive temperature effect of TET on P. xylostella, such as UGTs, GSTs and P450s, are strongly involved. The transcriptome data provide in-depth information to understand the TET mechanism against diamondback moth. Most importantly, we identified detoxification enzymes that might be involved in regulating TET's positive temperature effect process, and contributed to efficient pest management.


Asunto(s)
Insecticidas , Lepidópteros , Animales , Insecticidas/toxicidad , Temperatura , Larva/genética , Hojas de la Planta
3.
J Neuroinflammation ; 19(1): 67, 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35287697

RESUMEN

BACKGROUND: Inflammation induced by intracerebral hemorrhage (ICH) is one of the main causes of the high mortality and poor prognosis of patients with ICH. A1 astrocytes are closely associated with neuroinflammation and neurotoxicity, whereas A2 astrocytes are neuroprotective. Homer scaffolding protein 1 (Homer1) plays a protective role in ischemic encephalopathy and neurodegenerative diseases. However, the role of Homer1 in ICH-induced inflammation and the effect of Homer1 on the phenotypic conversion of astrocytes remain unknown. METHODS: Femoral artery autologous blood from C57BL/6 mice was used to create an ICH model. We use the A1 phenotype marker C3 and A2 phenotype marker S100A10 to detect astrocyte conversion after ICH. Homer1 overexpression/knock-down mice were constructed by adeno-associated virus (AAV) infection to explore the role of Homer1 and its mechanism of action after ICH. Finally, Homer1 protein and selumetinib were injected into in situ hemorrhage sites in the brains of Homer1flox/flox/Nestin-Cre+/- mice to study the efficacy of Homer1 in the treatment of ICH by using a mouse cytokine array to explore the potential mechanism. RESULTS: The expression of Homer1 peaked on the third day after ICH and colocalized with astrocytes. Homer1 promotes A1 phenotypic conversion in astrocytes in vivo and in vitro. Overexpression of Homer1 inhibits the activation of MAPK signaling, whereas Homer1 knock-down increases the expression of pathway-related proteins. The Homer1 protein and selumetinib, a non-ATP competitive MEK1/2 inhibitor, improved the outcome in ICH in Homer1flox/flox/Nestin-Cre+/- mice. The efficacy of Homer1 in the treatment of ICH is associated with reduced expression of the inflammatory factor TNFSF10 and increased expression of the anti-inflammatory factors activin A, persephin, and TWEAK. CONCLUSIONS: Homer1 plays an important role in inhibiting inflammation after ICH by suppressing the A1 phenotype conversion in astrocytes. In situ injection of Homer1 protein may be a novel and effective method for the treatment of inflammation after ICH.


Asunto(s)
Astrocitos , Hemorragia Cerebral , Animales , Astrocitos/metabolismo , Hemorragia Cerebral/metabolismo , Proteínas de Andamiaje Homer/genética , Proteínas de Andamiaje Homer/metabolismo , Proteínas de Andamiaje Homer/farmacología , Humanos , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
4.
Ecotoxicology ; 29(5): 607-612, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32291615

RESUMEN

The effect of temperature on the toxicities of four diamide insecticides (chlorantraniliprole, cyantraniliprole, flubendiamide, tetraniliprole) against three lepidopteran insects (Helicoverpa armigera, Plutella xylostella, Athetis lepigone) were determined from 15 to 35 °C by exposing third-instar larvae to dip-treated cabbage leaf. The results indicated that increase in temperature led to an increase significantly and regularly in the toxicities of the four diamide insecticides against P. xylostella and H. armigera, but not for A. lepigone. The temperature coefficients (TCs) of the four diamide insecticides increased from 15 to 35 °C. Tetraniliprole for H. armigera (+825.83), chlorantraniliprole for P. xylostella (+315.65) and cyantraniliprole for H. armigera (+225.77) exhibited high positive TCs. For A. lepigone, temperature had a positively weak or no effect on the toxicities of most of the diamide insecticides from 20 to 30 °C, but a higher effect from 30 to 35 °C. In addition, the toxicities of chlorantraniliprole, cyantraniliprole and tetraniliprole all decreased from 15 to 20 °C. This study can guide pest managers in choosing suitable ambient field temperature when spraying diamide insecticides against lepidopteran insects.


Asunto(s)
Diamida/toxicidad , Insectos , Insecticidas/toxicidad , Animales , Benzamidas , Larva , Mariposas Nocturnas , Pirazoles , Sulfonas , Temperatura , Pruebas de Toxicidad , ortoaminobenzoatos
5.
Int J Mol Sci ; 21(2)2020 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-31963875

RESUMEN

The existence of a temperature effect of insecticides frustrated the control of the green plant bug Apolygus lucorum (Meyer-Dür). Previous studies mostly focused on the application of insecticides, but the underlying mechanism remains incompletely understood. Here, we report a transcriptome profiling of A. lucorum treated by three kinds of temperature coefficient insecticides (TCIs) (positive TCI: imidacloprid, negative TCI: b-cypermethrin and non-effect TCI: phoxim) at 15 °C, 25 °C and 35 °C by using next- and third-generation RNA-Seq methods. A total of 34,739 transcripts were annotated from 277.74 Gb of clean data. There were more up-regulated transcripts than down-regulated transcripts in all three kinds of TCI treatments. Further Venn diagrams indicate the regulatory transcripts and regulatory modes were different at the three temperatures. The responses to imidacloprid involved more detox and stress response transcripts such as cytochrome P450 (CYP450), carboxylesterase (CarE) and catalase (CAT) at 35 °C, which was the case for beta-cypermethrin at 15 °C. UDP-glucuronyltransferase (UGT) and heat shock protein (HSP) transcripts were heavily involved, and thus deserve particular note in the temperature effect of insecticides. This high-confidence transcriptome atlas provides improved gene information for further study on the insecticide temperature effect related physiological and biochemical processes of A. lucorum.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Heterópteros/crecimiento & desarrollo , Proteínas de Insectos/genética , Insecticidas/farmacología , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Heterópteros/efectos de los fármacos , Heterópteros/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Neonicotinoides/farmacología , Nitrocompuestos/farmacología , Compuestos Organotiofosforados/farmacología , Piretrinas/farmacología , Análisis de Secuencia de ARN , Temperatura
6.
J Inflamm Res ; 17: 1337-1347, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38434583

RESUMEN

Purpose: We aim to explore the relationship between Homer1 and the outcomes of AIS patients at 3 months. Patients and Methods: This prospective cohort study was conducted from May 2022 to March 2023. In this study, we investigated the association between serum Homer1 levels by enzyme-linked immunosorbent assay at admission and functional outcomes of patients at 3 months after AIS. Results: Overall, 89 AIS patients (48 good outcomes and 41 poor outcomes) and 83 healthy controls were included. The median serum Homer1 level of patients at admission with poor outcomes was significantly higher than that of patients with good outcomes (39.33 vs 33.15, P<0.001). Serum Homer1 levels at admission were positively correlated with the severity of AIS (r = 0.488, P<0.001). The optimal cutoff of serum Homer1 level as an indicator for an auxiliary diagnosis of 3 months functional outcomes was 35.07 pg/mL, with a sensitivity of 75.0% and a specificity of 92.7% (AUC 0.837; 95% CI [0.744-0.907]; P<0 0.001). The odds ratio of MRS > 2 predicted by the level of serum Homer1 after 3 months was 1.665 (1.306-2.122; P<0.001). Conclusion: Serum concentrations of Homer1 have a high predictive value for neurobehavioral outcomes after acute ischemic stroke. Higher serum Homer1 levels (>35.07 pg/mL) were positively associated with poor functional outcomes of patients 3 months post-stroke.

7.
Neural Regen Res ; 18(4): 922-928, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36204864

RESUMEN

Retinal injury after blunt ocular trauma may directly affect prognosis and lead to vision loss. To investigate the pathological changes and molecular mechanisms involved in retinal injury after blunt ocular trauma, we established a weight drop injury model of blunt ocular trauma in male Beagle dogs. Hematoxylin-eosin staining, immunofluorescence staining, western blotting, and TUNEL assays were performed to investigate retinal injury within 14 days after blunt ocular trauma. Compared with the control group, the thicknesses of the inner and outer nuclear layers, as well as the number of retinal ganglion cells, gradually decreased within 14 days after injury. The number of bipolar cells in the inner nuclear layer began to decrease 1 day after injury, while the numbers of cholinergic and amacrine cells in the inner nuclear layer did not decrease until 7 days after injury. Moreover, retinal cell necroptosis increased with time after injury; it progressed from the ganglion cell layer to the outer nuclear layer. Visual electrophysiological findings indicated that visual impairment began on the first day after injury and worsened over time. Additionally, blunt ocular trauma induced nerve regeneration and Müller glial hyperplasia; it also resulted in the recruitment of microglia to the retina and polarization of those microglia to the M1 phenotype. These findings suggest that necroptosis plays an important role in exacerbating retinal injury after blunt ocular trauma via gliosis and neuroinflammation. Such a role has important implications for the development of therapeutic strategies.

8.
Exp Mol Med ; 55(6): 1203-1217, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37258577

RESUMEN

The tripartite motif (TRIM) 22 and mitogen-activated protein kinase (MAPK) signaling pathways play critical roles in the growth of glioblastoma (GBM). However, the molecular mechanism underlying the relationship between TRIM22 and MAPK signaling remains unclear. Here, we found that TRIM22 binds to exon 2 of the sphingosine kinase 2 (SPHK2) gene. An ERK1/2-driven luciferase reporter construct identified TRIM22 as a potential activator of MAPK signaling. Knockout and overexpression of TRIM22 regulate the inhibition and activation of MAPK signaling through the RING-finger domain. TRIM22 binds to Raf-1, a negative regulator of MAPK signaling, and accelerates its degradation by inducing K48-linked ubiquitination, which is related to the CC and SPRY domains of TRIM22 and the C1D domain of Raf-1. In vitro and in vivo, an SPHK2 inhibitor (K145), an ERK1/2 inhibitor (selumetinib), and the nonphosphorylated mutant Raf-1S338A inhibited GBM growth. In addition, deletion of the RING domain and the nuclear localization sequence of TRIM22 significantly inhibited TRIM22-induced proliferation of GBM cells in vivo and in vitro. In conclusion, our study showed that TRIM22 regulates SPHK2 transcription and activates MAPK signaling through posttranslational modification of two critical regulators of MAPK signaling in GBM cells.


Asunto(s)
Glioblastoma , Proteínas Quinasas Activadas por Mitógenos , Humanos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Glioblastoma/genética , Transducción de Señal , Línea Celular , Proliferación Celular , Antígenos de Histocompatibilidad Menor , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Proteínas Represoras/genética
9.
Neuroscience ; 480: 97-107, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34798181

RESUMEN

Ischemic injury in patients with stroke often leads to neuronal damage and mitochondrial dysfunction. Neuronal injury caused by ischemia can be partly attributed to glutamate (L-Glu) excitotoxicity. Previous studies have shown that PTEN-induced kinase 1 (PINK1) plays a neuroprotective role in ischemic brain injury by regulating mitochondrial integrity and function. However, there are few reports on the expression of PINK1 in L-Glu excitotoxicity models, its effect on neuronal survival, and whether PINK1 plays a protective role in stroke by regulating mitophagy. In the present study, different concentrations of L-Glu inhibited the viability of neurons. After L-Glu treatment at different times, the mRNA level, protein level, and cellular fluorescence intensity of PINK1 first increased and then decreased. Compared with normal cells, cells with low PINK1 expression enhanced the inhibitory effect of L-Glu on neuronal activity, while those with high PINK1 expression showed a protective effect on neurons by alleviating mitochondrial membrane potential loss. In addition, RAP (an autophagy activator) could increase the co-localization of the mitophagy-related proteins light chain 3 (LC3) and Tom20, whereas 3-MA (an autophagy inhibitor) exerted the opposite effect. Finally, we found that L-Glu could induce the expression of PINK1/Parkin/ LC3 in neurons at both mRNA and protein levels, while RAP could further increase their expression, and 3-MA decreased their expression. Taken together, PINK1 protects against L-Glu-induced neuronal injury by protecting mitochondrial function, and the potential protective mechanism may be closely related to the enhancement of mitophagy mediated by the PINK1/Parkin signaling pathway.


Asunto(s)
Fármacos Neuroprotectores , Ácido Glutámico/toxicidad , Humanos , Mitofagia , Neuronas , Fármacos Neuroprotectores/farmacología , Proteínas Quinasas/farmacología , Ubiquitina-Proteína Ligasas
10.
PLoS One ; 17(8): e0272429, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35969534

RESUMEN

Temperature can have influences on the toxicities and efficacies of insecticides. Therefore, it is important to accurately evaluate the temperature effect (TE) on the toxicities of insecticides to insects. Previous studies have shown that the pre-exposure of insects to temperatures before their contact with insecticides, caused variations in their toxicities. However, most of these studies focused on the TE of the insecticides post-treatment. In this study we hypothesized that pre-exposure time of insect at different temperature can influence the toxicities of insecticides. We then evaluated the influence of different pre-exposure time (0, 2, 4, 8, 12 and 24 h) on toxicities of three different temperature effect insecticides (TEIs) to Apolygus lucorum at 15, 25 and 35°C respectively. We found that all toxicities of three TEIs to A. lucorum did not vary with pre-exposure time at 25°C. The LC50 of hexaflumuron (positive TEI) only decreased (from 1800.06 to 237.40 mg/L) at 15°C, with an increase in the pre-exposure time. Whereas the LC50 of ß-cypermethrin (negative TEI) decreased from 225.43 to 60.79 mg/L at 35°C. These results also showed that the temperature coefficients (TCs) of the toxicities were influenced by pre-exposure time at different temperatures. For hexaflumuron, all the TCs at 25°C and 35°C decreased, as the pre-exposure time increased. For ß-cypermethrin, the TCs decreased significantly only at 35°C. The toxicity and TCs of phoxim (non-effect TEI) showed no obvious fluctuation at the tested temperatures. These results showed that when the pre-exposure times were extended, the toxicities of the positive / negative TEI showed an increase at the temperature where the pest was less sensitive to the insecticides. These results can be applied to determine the toxicities / bioactivities of different insecticides accurately at different temperatures.


Asunto(s)
Heterópteros , Insecticidas , Animales , Insectos , Insecticidas/toxicidad , Temperatura
11.
Neuroscience ; 492: 1-17, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35405301

RESUMEN

Toll-like receptor-4 (TLR4), a member of the TLR family, plays a key role in inflammation-related diseases of the nervous system. TLR4 knockout mice are widely used in various neurological disease studies, and there is a clear correlation between inflammation and behavior. Therefore, elucidating the effect of TLR4 on neurobehavioral function is essential, and the related mechanisms need to be explored. Male TLR4 knockout (TLR4-/-) and wild-type (TLR4+/+) mice of different ages (4, 8, and 16 months) were used for behavioral experiments. Synaptic spine, blood-brain barrier (BBB) integrity, memory regulatory proteins, cortical blood flow, and inflammatory factor examinations were also conducted to explore the possible mechanism by which TLR4 works. Here, we found that compared with 16-m-old TLR4+/+ mice, age-matched TLR4-/- mice had better learning and memory abilities, increased expression of neuronal synaptic spines, and increased memory-related regulatory proteins in the hippocampus. TLR4 knockout significantly attenuated the fear response in 16-m-old mice. The TLR4-/- mice also had better blood-brain barrier integrity, increased expression of tight junction-associated proteins, increased cerebral cortical blood flow and reduced proinflammatory cytokine expression in the cortex and cerebrospinal fluid. Our results suggest that TLR4 deletion ameliorates significant neurobehavioral dysfunction during the aging stage, as well as multiple abnormalities in brain function and structure due to alterations in tight junction-associated proteins and inflammatory factors.


Asunto(s)
Encéfalo , Receptor Toll-Like 4 , Animales , Encéfalo/metabolismo , Cognición , Eliminación de Gen , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Uniones Estrechas/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
12.
Mol Ther Oncolytics ; 26: 413-428, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36159777

RESUMEN

Tripartite motif 22 (TRIM22) is an agonist of nuclear factor κB (NF-κB) that plays an important role in the proliferation and drug sensitivity of glioblastoma (GBM). However, the molecular mechanism underlying the protein network between TRIM22 and nuclear factor κB (NF-κB) in GBM remains unclear. Here, we found that knockout of TRIM22 effectively inhibited tumor proliferation and increased the sensitivity of GBM cells to temozolomide (TMZ) in vivo and in vitro. Moreover, TRIM22 forms a complex with cytosolic purine 5-nucleotidase (NT5C2) in GBM and regulates the ubiquitination of retinoic acid-inducible gene-I (RIG-I). TRIM22 promotes the K63-linked ubiquitination of RIG-I, while NT5C2 is responsible for K48-linked ubiquitination. This regulation directly affects the RIG-I/NF-κB/cell division cycle and apoptosis regulator protein 1 (CCAR1) signaling axis. Ubiquitin modification inhibitor of RIG-I restores the inhibition of tumor growth induced by TRIM22 knockout. The follow-up results showed that compared with patients with high TRIM22 expression, patients with low TRIM22 expression had a longer survival time and were more sensitive to treatment with TMZ. Our results revealed that the TRIM22-NT5C2 complex orchestrates the proliferation of GBM and benefits of TMZ through post-translational modification of RIG-I and the regulation of the RIG-I/NF-κB/CCAR1 pathway and is a promising target for single-pathway multi-target therapy.

13.
Neuroscience ; 478: 1-10, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34600073

RESUMEN

Glutamate excitotoxicity is one of the important pathophysiological culprits in retinal ganglion cells (RGCs) damage after acute optic nerve injury such as traumatic optic neuropathies and glaucoma. It is necessary to elucidate the mechanism of glutamate injury to RGCs in order to find the relevant neuroprotector. In this study, it was observed that the expression of Parkin increased and peaked at 24 h after glutamate injury to RGCs. Moreover, upregulating Parkin attenuated glutamate induced apoptosis, mitochondrial dysfunction and oxidative stress. And, it was found that Parkin could exert neuroprotective effects on RGCs by inhibiting nucleotide-binding domain leucine-rich repeat containing family pyrin domain containing 3 (NLRP3) inflammasome. Moreover, the genetic and pharmacological downregulation of NLRP3 improved survival of RGCs against glutamate excitotoxicity. In the end, knockdown of Parkin exacerbated glutamate induced RGCs damage via triggering NLRP3 inflammasome activation. Taken together, these results shed light on the promising molecular targets for the prevention and treatment of acute optic nerve injury.


Asunto(s)
Inflamasomas , Células Ganglionares de la Retina , Ácido Glutámico/toxicidad , Proteína con Dominio Pirina 3 de la Familia NLR , Ubiquitina-Proteína Ligasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA