Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
PLoS Pathog ; 16(5): e1008499, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32407406

RESUMEN

Heme, an iron-containing organic ring, is essential for virtually all living organisms by serving as a prosthetic group in proteins that function in diverse cellular activities ranging from diatomic gas transport and sensing, to mitochondrial respiration, to detoxification. Cellular heme levels in microbial pathogens can be a composite of endogenous de novo synthesis or exogenous uptake of heme or heme synthesis intermediates. Intracellular pathogenic microbes switch routes for heme supply when heme availability fluctuates in their replicative environment throughout infection. Here, we show that Toxoplasma gondii, an obligate intracellular human pathogen, encodes a functional heme biosynthesis pathway. A chloroplast-derived organelle, termed apicoplast, is involved in heme production. Genetic and chemical manipulation revealed that de novo heme production is essential for T. gondii intracellular growth and pathogenesis. Surprisingly, the herbicide oxadiazon significantly impaired Toxoplasma growth, consistent with phylogenetic analyses that show T. gondii protoporphyrinogen oxidase is more closely related to plants than mammals. This inhibition can be enhanced by 15- to 25-fold with two oxadiazon derivatives, lending therapeutic proof that Toxoplasma heme biosynthesis is a druggable target. As T. gondii has been used to model other apicomplexan parasites, our study underscores the utility of targeting heme biosynthesis in other pathogenic apicomplexans, such as Plasmodium spp., Cystoisospora, Eimeria, Neospora, and Sarcocystis.


Asunto(s)
Hemo/genética , Filogenia , Protoporfirinógeno-Oxidasa/genética , Proteínas Protozoarias/genética , Toxoplasma/genética , Toxoplasmosis/genética , Hemo/biosíntesis , Humanos , Proteínas de Plantas/metabolismo , Plantas/enzimología , Plantas/genética , Protoporfirinógeno-Oxidasa/metabolismo , Proteínas Protozoarias/metabolismo , Toxoplasma/enzimología , Toxoplasmosis/enzimología
2.
J Eukaryot Microbiol ; 69(6): e12951, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36218001

RESUMEN

Toxoplasma gondii belongs to the phylum Apicomplexa and is an important cause of congenital disease and infection in immunocompromised patients. T. gondii shares several characteristics with plants including a nonphotosynthetic plastid termed apicoplast and a multivesicular organelle that was named the plant-like vacuole (PLV) or vacuolar compartment (VAC). The name plant-like vacuole was selected based on its resemblance in composition and function to plant vacuoles. The name VAC represents its general vacuolar characteristics. We will refer to the organelle as PLVAC in this review. New findings in recent years have revealed that the PLVAC represents the lysosomal compartment of T. gondii which has adapted peculiarities to fulfill specific Toxoplasma needs. In this review, we discuss the composition and functions of the PLVAC highlighting its roles in ion storage and homeostasis, endocytosis, exocytosis, and autophagy.


Asunto(s)
Apicoplastos , Toxoplasma , Humanos , Vacuolas , Proteínas Protozoarias , Plantas
3.
PLoS Pathog ; 15(6): e1007775, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31170269

RESUMEN

Toxoplasma gondii is an apicomplexan parasite with the ability to use foodborne, zoonotic, and congenital routes of transmission that causes severe disease in immunocompromised patients. The parasites harbor a lysosome-like organelle, termed the "Vacuolar Compartment/Plant-Like Vacuole" (VAC/PLV), which plays an important role in maintaining the lytic cycle and virulence of T. gondii. The VAC supplies proteolytic enzymes that contribute to the maturation of invasion effectors and that digest autophagosomes and endocytosed host proteins. Previous work identified a T. gondii ortholog of the Plasmodium falciparum chloroquine resistance transporter (PfCRT) that localized to the VAC. Here, we show that TgCRT is a membrane transporter that is functionally similar to PfCRT. We also genetically ablate TgCRT and reveal that the TgCRT protein plays a key role in maintaining the integrity of the parasite's endolysosomal system by controlling morphology of the VAC. When TgCRT is absent, the VAC dramatically increases in volume by ~15-fold and overlaps with adjacent endosome-like compartments. Presumably to reduce aberrant swelling, transcription and translation of endolysosomal proteases are decreased in ΔTgCRT parasites. Expression of subtilisin protease 1 is significantly reduced, which impedes trimming of microneme proteins, and significantly decreases parasite invasion. Chemical or genetic inhibition of proteolysis within the VAC reverses these effects, reducing VAC size and partially restoring integrity of the endolysosomal system, microneme protein trimming, and invasion. Taken together, these findings reveal for the first time a physiological role of TgCRT in substrate transport that impacts VAC volume and the integrity of the endolysosomal system in T. gondii.


Asunto(s)
Cloroquina/farmacología , Endosomas , Lisosomas , Proteínas de Transporte de Membrana , Plasmodium falciparum , Proteínas Protozoarias , Toxoplasma , Toxoplasmosis , Línea Celular , Endosomas/metabolismo , Endosomas/parasitología , Humanos , Lisosomas/metabolismo , Lisosomas/parasitología , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Toxoplasma/genética , Toxoplasma/metabolismo , Toxoplasma/patogenicidad , Toxoplasmosis/genética , Toxoplasmosis/metabolismo , Toxoplasmosis/patología
4.
Mol Microbiol ; 93(4): 698-712, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24975633

RESUMEN

The vacuolar proton pyrophosphatase (H(+) -PPase) of Toxoplasma gondii (TgVP1), a membrane proton pump, localizes to acidocalcisomes and a novel lysosome-like compartment termed plant-like vacuole (PLV) or vacuolar compartment (VAC). We report the characterization of a T. gondii null mutant for the TgVP1 gene. Propagation of these mutants decreased significantly because of deficient attachment and invasion of host cells, which correlated with deficient microneme secretion. Processing of cathepsin L (CPL) in these mutants was deficient only when the parasites were incubated in the presence of low concentrations of the vacuolar H(+) -ATPase (V-H(+) -ATPase) inhibitor bafilomycin A1 , suggesting that either TgVP1 or the T. gondii V-H(+) -ATPase (TgVATPase) are sufficient to support CPL processing. The lack of TgVP1 did not affect processing of micronemal proteins, indicating that it does not contribute to proMIC maturations. The TgVP1 null mutants were more sensitive to extracellular conditions and were less virulent in mice. We demonstrate that T. gondii tachyzoites possess regulatory volume decrease capability during hypo-osmotic stress and this ability is impaired in TgVP1 null mutants implicating TgVP1 in osmoregulation. We hypothesize that osmoregulation is needed for host cell invasion and that TgVP1 plays a role during the normal lytic cycle of T. gondii.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Supervivencia Celular , Endocitosis , Pirofosfatasa Inorgánica/metabolismo , Toxoplasma/enzimología , Vacuolas/enzimología , Animales , Modelos Animales de Enfermedad , Eliminación de Gen , Pirofosfatasa Inorgánica/genética , Ratones , Toxoplasma/metabolismo , Toxoplasma/fisiología , Toxoplasmosis Animal , Vacuolas/metabolismo , Virulencia
5.
Eukaryot Cell ; 13(11): 1360-70, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24859994

RESUMEN

Mutations in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) protein confer resistance to the antimalarial drug chloroquine. PfCRT localizes to the parasite digestive vacuole, the site of chloroquine action, where it mediates resistance by transporting chloroquine out of the digestive vacuole. PfCRT belongs to a family of transporter proteins called the chloroquine resistance transporter family. CRT family proteins are found throughout the Apicomplexa, in some protists, and in plants. Despite the importance of PfCRT in drug resistance, little is known about the evolution or native function of CRT proteins. The apicomplexan parasite Toxoplasma gondii contains one CRT family protein. We demonstrate that T. gondii CRT (TgCRT) colocalizes with markers for the vacuolar (VAC) compartment in these parasites. The TgCRT-containing VAC is a highly dynamic organelle, changing its morphology and protein composition between intracellular and extracellular forms of the parasite. Regulated knockdown of TgCRT expression resulted in modest reduction in parasite fitness and swelling of the VAC, indicating that TgCRT contributes to parasite growth and VAC physiology. Together, our findings provide new information on the role of CRT family proteins in apicomplexan parasites.


Asunto(s)
Antimaláricos/farmacología , Transporte Biológico/genética , Cloroquina/farmacología , Proteínas de Transporte de Membrana/genética , Proteínas Protozoarias/genética , Toxoplasma/metabolismo , Secuencia de Bases , Resistencia a Medicamentos , Técnicas de Inactivación de Genes , Datos de Secuencia Molecular , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Alineación de Secuencia
6.
J Biol Chem ; 288(5): 3523-34, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23250753

RESUMEN

Proteases regulate key events during infection by the pervasive intracellular parasite Toxoplasma gondii. Understanding how parasite proteases mature from an inactive zymogen to an active enzyme is expected to inform new strategies for blocking their actions. Herein, we show that T. gondii cathepsin B protease (TgCPB) does not undergo self-maturation but instead requires the expression of a second papain-family cathepsin protease, TgCPL. Using recombinant enzymes we also show that TgCPL is capable of partially maturing TgCPB in vitro. Consistent with this interrelationship, antibodies with validated specificity detected TgCPB in the lysosome-like vacuolar compartment along with TgCPL. Our findings also establish that TgCPB does not localize to the rhoptries as previously reported. Accordingly, rhoptry morphology and rhoptry protein maturation are normal in TgCPB knock-out parasites. Finally, we show that although maturation of TgCPL is independent of TgCPB, it may involve an additional protease(s) in conjunction with self-maturation.


Asunto(s)
Catepsina B/metabolismo , Catepsina L/metabolismo , Papaína/metabolismo , Proteínas Protozoarias/metabolismo , Toxoplasma/enzimología , Secuencia de Aminoácidos , Catepsina B/química , Catepsina L/química , Fibroblastos/parasitología , Fibroblastos/ultraestructura , Marcación de Gen , Humanos , Masculino , Datos de Secuencia Molecular , Papaína/química , Proteolisis , Proteínas Protozoarias/química , Toxoplasma/ultraestructura , Vacuolas/metabolismo , Vacuolas/ultraestructura
7.
mBio ; 15(4): e0028324, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38407123

RESUMEN

Toxoplasma gondii is a widespread intracellular protozoan pathogen infecting virtually all warm-blooded animals. This parasite acquires host-derived resources to support its replication inside a membrane-bound parasitophorous vacuole within infected host cells. Previous research has discovered that Toxoplasma actively endocytoses host proteins and transports them to a lysosome-equivalent structure for digestion. However, few molecular determinants required for trafficking of host-derived material within the parasite were known. A recent study (Q.-Q. Wang, M. Sun, T. Tang, D.-H. Lai, et al., mBio 14:e01309-23, 2023, https://doi.org/10.1128/mbio.01309-23) identified a critical role for membrane anchoring of proteins via prenylation in the trafficking of endocytosed host proteins by Toxoplasma, including an essential Toxoplasma ortholog of Rab1B. The authors also found that TgRab1 is crucial for protein trafficking of the rhoptry secretory organelles, indicating a dual role in endocytic and exocytic protein trafficking. This study sets the stage for further dissecting endomembrane trafficking in Toxoplasma, along with potentially exploiting protein prenylation as a target for therapeutic development.


Asunto(s)
Toxoplasma , Animales , Toxoplasma/metabolismo , Prenilación de Proteína , Proteínas/metabolismo , Orgánulos/metabolismo , Transporte de Proteínas
8.
mSphere ; 9(3): e0009224, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38411121

RESUMEN

Toxoplasma gondii is an apicomplexan parasite that is the cause of toxoplasmosis, a potentially lethal disease for immunocompromised individuals. During in vivo infection, the parasites encounter various growth environments, such as hypoxia. Therefore, the metabolic enzymes in the parasites must adapt to such changes to fulfill their nutritional requirements. Toxoplasma can de novo biosynthesize some nutrients, such as heme. The parasites heavily rely on their own heme production for intracellular survival. Notably, the antepenultimate step within this pathway is facilitated by coproporphyrinogen III oxidase (CPOX), which employs oxygen to convert coproporphyrinogen III to protoporphyrinogen IX through oxidative decarboxylation. Conversely, some bacteria can accomplish this conversion independently of oxygen through coproporphyrinogen dehydrogenase (CPDH). Genome analysis found a CPDH ortholog in Toxoplasma. The mutant Toxoplasma lacking CPOX displays significantly reduced growth, implying that T. gondii CPDH (TgCPDH) potentially functions as an alternative enzyme to perform the same reaction as CPOX under low-oxygen conditions. In this study, we demonstrated that TgCPDH exhibits CPDH activity by complementing it in a heme synthesis-deficient Salmonella mutant. Additionally, we observed an increase in TgCPDH expression in Toxoplasma when it grew under hypoxic conditions. However, deleting TgCPDH in both wild-type and heme-deficient parasites did not alter their intracellular growth under both ambient and low-oxygen conditions. This research marks the first report of a CPDH-like protein in eukaryotic cells. Although TgCPDH responds to hypoxic conditions and possesses enzymatic activity, our findings revealed that it does not directly affect acute Toxoplasma infections in vitro and in vivo. IMPORTANCE: Toxoplasma gondii is a ubiquitous parasite capable of infecting a wide range of warm-blooded hosts, including humans. During its life cycle, these parasites must adapt to varying environmental conditions, including situations with low-oxygen levels, such as intestine and spleen tissues. Our research, in conjunction with studies conducted by other laboratories, has revealed that Toxoplasma primarily relies on its own heme production during acute infections. Intriguingly, in addition to this classical heme biosynthetic pathway, the parasites encode a putative oxygen-independent coproporphyrinogen dehydrogenase (CPDH), suggesting its potential contribution to heme production under varying oxygen conditions, a feature typically observed in simpler organisms like bacteria. Notably, so far, CPDH has only been identified in some bacteria for heme biosynthesis. Our study discovered that Toxoplasma harbors a functional enzyme displaying CPDH activity, which alters its expression in the parasites when they face fluctuating oxygen levels in their surroundings.


Asunto(s)
Toxoplasma , Humanos , Toxoplasma/metabolismo , Coproporfirinógenos/metabolismo , Hemo , Coproporfirinógeno Oxidasa/genética , Hipoxia , Oxígeno/metabolismo
9.
J Biol Chem ; 287(43): 36029-40, 2012 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-22896704

RESUMEN

Toxoplasma gondii is the model parasite of the phylum Apicomplexa, which contains obligate intracellular parasites of medical and veterinary importance. Apicomplexans invade host cells by a multistep process involving the secretion of adhesive microneme protein (MIC) complexes. The subtilisin protease TgSUB1 trims several MICs on the parasite surface to activate gliding motility and host invasion. Although a previous study showed that expression of the secretory protein TgMIC5 suppresses TgSUB1 activity, the mechanism was unknown. Here, we solve the three-dimensional structure of TgMIC5 by nuclear magnetic resonance (NMR), revealing that it mimics a subtilisin prodomain including a flexible C-terminal peptide that may insert into the subtilisin active site. We show that TgMIC5 is an almost 50-fold more potent inhibitor of TgSUB1 activity than the small molecule inhibitor N-[N-(N-acetyl-L-leucyl)-L-leucyl]-L-norleucine (ALLN). Moreover, we demonstrate that TgMIC5 is retained on the parasite plasma membrane via its physical interaction with the membrane-anchored TgSUB1.


Asunto(s)
Moléculas de Adhesión Celular/química , Complejos Multiproteicos/química , Proteínas Protozoarias/química , Subtilisina/química , Toxoplasma/química , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Resonancia Magnética Nuclear Biomolecular , Estructura Cuaternaria de Proteína , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Subtilisina/genética , Subtilisina/metabolismo , Toxoplasma/genética , Toxoplasma/metabolismo
10.
bioRxiv ; 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38014006

RESUMEN

Toxoplasma gondii is an apicomplexan parasite that is the cause of toxoplasmosis, a potentially lethal disease for immunocompromised individuals. During in vivo infection, the parasites encounter various growth environments, such as hypoxia. Therefore, the metabolic enzymes in the parasites must adapt to such changes to fulfill their nutritional requirements. Toxoplasma can de novo biosynthesize some nutrients, such as heme. The parasites heavily rely on their own heme production for intracellular survival. Notably, the antepenultimate step within this pathway is facilitated by coproporphyrinogen III oxidase (CPOX), which employs oxygen to convert coproporphyrinogen III to protoporphyrinogen IX through oxidative decarboxylation. Conversely, some bacteria can accomplish this conversion independently of oxygen through coproporphyrinogen dehydrogenase (CPDH). Genome analysis found a CPDH ortholog in Toxoplasma. The mutant Toxoplasma lacking CPOX displays significantly reduced growth, implying that TgCPDH potentially functions as an alternative enzyme to perform the same reaction as CPOX under low oxygen conditions. In this study, we demonstrated that TgCPDH exhibits coproporphyrinogen dehydrogenase activity by complementing it in a heme synthesis-deficient Salmonella mutant. Additionally, we observed an increase in TgCPDH expression in Toxoplasma when it grew under hypoxic conditions. However, deleting TgCPDH in both wildtype and heme-deficient parasites did not alter their intracellular growth under both ambient and low oxygen conditions. This research marks the first report of a coproporphyrinogen dehydrogenase-like protein in eukaryotic cells. Although TgCPDH responds to hypoxic conditions and possesses enzymatic activity, our findings suggest that it does not directly affect intracellular infection or the pathogenesis of Toxoplasma parasites.

11.
Nat Commun ; 14(1): 3659, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37339985

RESUMEN

Iron is essential to cells as a cofactor in enzymes of respiration and replication, however without correct storage, iron leads to the formation of dangerous oxygen radicals. In yeast and plants, iron is transported into a membrane-bound vacuole by the vacuolar iron transporter (VIT). This transporter is conserved in the apicomplexan family of obligate intracellular parasites, including in Toxoplasma gondii. Here, we assess the role of VIT and iron storage in T. gondii. By deleting VIT, we find a slight growth defect in vitro, and iron hypersensitivity, confirming its essential role in parasite iron detoxification, which can be rescued by scavenging of oxygen radicals. We show VIT expression is regulated by iron at transcript and protein levels, and by altering VIT localization. In the absence of VIT, T. gondii responds by altering expression of iron metabolism genes and by increasing antioxidant protein catalase activity. We also show that iron detoxification has an important role both in parasite survival within macrophages and in virulence in a mouse model. Together, by demonstrating a critical role for VIT during iron detoxification in T. gondii, we reveal the importance of iron storage in the parasite and provide the first insight into the machinery involved.


Asunto(s)
Parásitos , Toxoplasma , Animales , Ratones , Toxoplasma/metabolismo , Vacuolas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Parásitos/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
12.
bioRxiv ; 2023 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-36712013

RESUMEN

Microbial pathogens use proteases for their infections, such as digestion of proteins for nutrients and activation of their virulence factors. As an obligate intracellular parasite, Toxoplasma gondii must invade host cells to establish its intracellular propagation. To facilitate invasion, the parasites secrete invasion effectors from microneme and rhoptry, two unique organelles in apicomplexans. Previous work has shown that some micronemal invasion effectors experience a series of proteolytic cleavages within the parasite's secretion pathway for maturation, such as the aspartyl protease (TgASP3) and the cathepsin L-like protease (TgCPL), localized within the post-Golgi compartment (1) and the endolysosomal system (2), respectively. Furthermore, it has been shown that the precise maturation of micronemal effectors is critical for Toxoplasma invasion and egress (1). Here, we show that an endosome-like compartment (ELC)-residing cathepsin C-like protease (TgCPC1) mediates the final trimming of some micronemal effectors, and its loss further results in defects in the steps of invasion, egress, and migration throughout the parasite's lytic cycle. Notably, the deletion of TgCPC1 completely blocks the activation of subtilisin-like protease 1 (TgSUB1) in the parasites, which globally impairs the surface-trimming of many key micronemal invasion and egress effectors. Additionally, we found that TgCPC1 was not efficiently inhibited by the chemical inhibitor targeting its malarial ortholog, suggesting that these cathepsin C-like orthologs are structurally different within the apicomplexan phylum. Taken together, our findings identify a novel function of TgCPC1 in the processing of micronemal proteins within the secretory pathway of Toxoplasma parasites and expand the understanding of the roles of cathepsin C protease. IMPORTANCE: Toxoplasma gondii is a microbial pathogen that is well adapted for disseminating infections. It can infect virtually all warm-blooded animals. Approximately one-third of the human population carries toxoplasmosis. During infection, the parasites sequentially secrete protein effectors from the microneme, rhoptry, and dense granule, three organelles exclusively found in apicomplexan parasites, to help establish their lytic cycle. Proteolytic cleavage of these secretory proteins is required for the parasite's optimal function. Previous work has revealed that two proteases residing within the parasite's secretory pathway cleave micronemal and rhoptry proteins, which mediate parasite invasion and egress. Here, we demonstrate that a cathepsin C-like protease (TgCPC1) is involved in processing several invasion and egress effectors. The genetic deletion of TgCPC1 prevented the complete maturation of some effectors in the parasites. Strikingly, the deletion led to a full inactivation of one surface-anchored protease, which globally impaired the trimming of some key micronemal proteins before secretion. Therefore, this finding represents a novel post-translational mechanism for the processing of virulence factors within microbial pathogens.

13.
mBio ; 14(4): e0017423, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37326431

RESUMEN

Microbial pathogens use proteases for their infections, such as digestion of proteins for nutrients and activation of their virulence factors. As an obligate intracellular parasite, Toxoplasma gondii must invade host cells to establish its intracellular propagation. To facilitate invasion, the parasites secrete invasion effectors from microneme and rhoptry, two unique organelles in apicomplexans. Previous work has shown that some micronemal invasion effectors experience a series of proteolytic cleavages within the parasite's secretion pathway for maturation, such as the aspartyl protease (TgASP3) and the cathepsin L-like protease (TgCPL), localized within the post-Golgi compartment and the endolysosomal system, respectively. Furthermore, it has been shown that the precise maturation of micronemal effectors is critical for Toxoplasma invasion and egress. Here, we show that an endosome-like compartment (ELC)-residing cathepsin C-like protease (TgCPC1) mediates the final trimming of some micronemal effectors, and its loss further results in defects in the steps of invasion, egress, and migration throughout the parasite's lytic cycle. Notably, the deletion of TgCPC1 completely blocks the activation of subtilisin-like protease 1 (TgSUB1) in the parasites, which globally impairs the surface-trimming of many key micronemal invasion and egress effectors. Additionally, we found that Toxoplasma is not efficiently inhibited by the chemical inhibitor targeting the malarial CPC ortholog, suggesting that these cathepsin C-like orthologs are structurally different within the apicomplexan phylum. Collectively, our findings identify a novel function of TgCPC1 in processing micronemal proteins within the Toxoplasma parasite's secretory pathway and expand the understanding of the roles of cathepsin C protease. IMPORTANCE Toxoplasma gondii is a microbial pathogen that is well adapted for disseminating infections. It can infect virtually all warm-blooded animals. Approximately one-third of the human population carries toxoplasmosis. During infection, the parasites sequentially secrete protein effectors from the microneme, rhoptry, and dense granule, three organelles exclusively found in apicomplexan parasites, to help establish their lytic cycle. Proteolytic cleavage of these secretory proteins is required for the parasite's optimal function. Previous work has revealed that two proteases residing within the parasite's secretory pathway cleave micronemal and rhoptry proteins, which mediate parasite invasion and egress. Here, we demonstrate that a cathepsin C-like protease (TgCPC1) is involved in processing several invasion and egress effectors. The genetic deletion of TgCPC1 prevented the complete maturation of some effectors in the parasites. Strikingly, the deletion led to a full inactivation of one surface-anchored protease, which globally impaired the trimming of some key micronemal proteins before secretion. Therefore, this finding represents a novel post-translational mechanism for the processing of virulence factors within microbial pathogens.

14.
ACS Infect Dis ; 8(5): 911-917, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35363476

RESUMEN

Infections of Toxoplasma gondii can cause severe and sometimes fatal diseases in immunocompromised individuals. The de novo heme biosynthesis pathway is required for intracellular growth and pathogenesis, making it an appealing therapeutic target. We synthesized a small library of derivatives of the herbicide oxadiazon, a known inhibitor of the penultimate reaction within the heme biosynthesis pathway in plants, catalyzed by protoporphyrinogen oxidase (PPO). Seven of the 18 analogs exhibit potent intracellular growth inhibition of wild-type T. gondii (IC50 = 1 to 2.4 µM). An assay of the compounds against Toxoplasma PPO knockout and complementation strains confirmed the mode of action to be due to the potent inhibition of PPO. The most potent compounds have no detectable cytotoxicity against human foreskin fibroblast cells up to 100 µM. This study suggests that oxadiazon derivatives may represent a new molecular scaffold for the effective treatment of T. gondii infections.


Asunto(s)
Toxoplasma , Hemo , Humanos , Oxadiazoles/farmacología
15.
Microbiol Spectr ; 10(5): e0349722, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36190416

RESUMEN

Most commercial products cannot be used for clearance of Mycoplasma contamination from cultures of apicomplexan parasites due to the parasites' dependence on the apicoplast, an essential organelle with DNA replication and translation machinery of cyanobacterial origin. The lone exception, mycoplasma removal agent (MRA), is relatively expensive, and some mycoplasma strains have shown resistance to clearance with MRA. Here, we report that the fluoroquinolone antibiotic sparfloxacin is a safe, effective, and inexpensive alternative for treatment of mycoplasma contamination in cultures of apicomplexan parasites. Sparfloxacin cleared both MRA-sensitive and MRA-resistant mycoplasma species from P. falciparum cultures at 1 and 4 µg/mL, respectively. We show that cultures of three different apicomplexan parasites can be maintained at concentrations of sparfloxacin required to clear mycoplasma without resulting in substantial deleterious effects on parasite growth. We also describe an alternative low-cost, in-house PCR assay for detecting mycoplasma. These findings will be useful to laboratories maintaining apicomplexan parasites in vitro, especially in low-resource environments, where the high cost of commercial products creates an economic barrier for detecting and eliminating mycoplasma from culture. IMPORTANCE These findings will be useful to laboratories maintaining apicomplexan parasites in vitro, especially in low-resource environments, where the high cost of commercial products creates an economic barrier for detecting and eliminating Mycoplasma from culture.


Asunto(s)
Mycoplasma , Parásitos , Animales , Mycoplasma/genética , Fluoroquinolonas/farmacología , Antibacterianos/farmacología
16.
Adv Exp Med Biol ; 712: 49-61, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21660658

RESUMEN

Cysteine proteases are important for the growth and survival of apicomplexan parasites that infect humans. The apicomplexan Toxoplasma gondii expresses five members of the C1 family of cysteine proteases, including one cathepsin L-like (TgCPL), one cathepsin B-like (TgCPB) and three cathepsin C-like (TgCPC1, 2 and 3) proteases. Recent genetic, biochemical and structural studies reveal that cathepsins function in microneme and rhoptry protein maturation, host cell invasion, replication and nutrient acquisition. here, we review the key features and roles of T. gondii cathepsins and discuss the therapeutic potential for specific inhibitor development.


Asunto(s)
Catepsinas/metabolismo , Toxoplasma/enzimología , Secuencia de Aminoácidos , Catepsinas/química , Catepsinas/genética , Catepsinas/uso terapéutico , Humanos , Datos de Secuencia Molecular , Filogenia , Transporte de Proteínas
17.
Bio Protoc ; 11(12): e4063, 2021 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-34263005

RESUMEN

Toxoplasma gondii is a highly prevalent protozoan pathogen throughout the world. As a eukaryotic intracellular pathogen, Toxoplasma ingests nutrients from host cells to support its intracellular growth. The parasites also encode full or partial metabolic pathways for the biosynthesis of certain nutrients, such as heme. Heme is an essential nutrient in virtually all living organisms, acting as a co-factor for mitochondrial respiration complexes. Free heme is toxic to cells; therefore, it gets conjugated to proteins or other metabolites to form a "labile heme pool," which is readily available for the biosynthesis of hemoproteins. Previous literature has shown that Toxoplasma gondii carries a fully functional de novo heme biosynthesis pathway and principally depends on this pathway for intracellular survival. Our recent findings also showed that the parasite's intracellular replication is proportional to the total abundance of heme within the cells. Moreover, heme abundance is linked to mitochondrial oxygen consumption for ATP production in these parasites; thus, they may need to regulate their cellular heme levels for optimal infection when present in different environments. Therefore, quantitative measurement of heme abundance within Toxoplasma will help us to understand the roles of heme in subcellular activities such as mitochondrial respiration and other events related to energy metabolism.

18.
Microorganisms ; 9(12)2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34946193

RESUMEN

Obligate intracellular parasites have evolved a remarkable assortment of strategies to scavenge nutrients from the host cells they parasitize. Most apicomplexans form a parasitophorous vacuole (PV) within the invaded cell, a replicative niche within which they survive and multiply. As well as providing a physical barrier against host cell defense mechanisms, the PV membrane (PVM) is also an important site of nutrient uptake that is essential for the parasites to sustain their metabolism. This means nutrients in the extracellular milieu are separated from parasite metabolic machinery by three different membranes, the host plasma membrane, the PVM, and the parasite plasma membrane (PPM). In order to facilitate nutrient transport from the extracellular environment into the parasite itself, transporters on the host cell membrane of invaded cells can be modified by secreted and exported parasite proteins to maximize uptake of key substrates to meet their metabolic demand. To overcome the second barrier, the PVM, apicomplexan parasites secrete proteins contained in the dense granules that remodel the vacuole and make the membrane permissive to important nutrients. This bulk flow of host nutrients is followed by a more selective uptake of substrates at the PPM that is operated by specific transporters of this third barrier. In this review, we recapitulate and compare the strategies developed by Apicomplexa to scavenge nutrients from their hosts, with particular emphasis on transporters at the parasite plasma membrane and vacuolar solute transporters on the parasite intracellular digestive organelle.

19.
J Vis Exp ; (158)2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32420988

RESUMEN

Toxoplasma gondii is a protozoan pathogen that widely affects the human population. The current antibiotics used for treating clinical toxoplasmosis are limited. In addition, they exhibit adverse side effects in certain groups of people. Therefore, discovery of novel therapeutics for clinical toxoplasmosis is imperative. The first step of novel antibiotic development is to identify chemical compounds showing high efficacy in inhibition of parasite growth using a high throughput screening strategy. As an obligate intracellular pathogen, Toxoplasma can only replicate within host cells, which prohibits the use of optical absorbance measurements as a quick indicator of growth. Presented here is a detailed protocol for a luciferase-based growth assay. As an example, this method is used to calculate the doubling time of wild-type Toxoplasma parasites and measure the efficacy of morpholinurea-leucyl-homophenyl-vinyl sulfone phenyl (LHVS, a cysteine protease-targeting compound) regarding inhibition of parasite intracellular growth. Also described, is a CRISPR-Cas9-based gene deletion protocol in Toxoplasma using 50 bp homologous regions for homology-dependent recombination (HDR). By quantifying the inhibition efficacies of LHVS in wild-type and TgCPL (Toxoplasma cathepsin L-like protease)-deficient parasites, it is shown that LHVS inhibits wild-type parasite growth more efficiently than Δcpl growth, suggesting that TgCPL is a target that LHVS binds to in Toxoplasma. The high sensitivity and easy operation of this luciferase-based growth assay make it suitable for monitoring Toxoplasma proliferation and evaluating drug efficacy in a high throughput manner.


Asunto(s)
Bioensayo , Toxoplasma/crecimiento & desarrollo , Animales , Antiparasitarios/farmacología , Luciferasas/metabolismo , Proteínas Protozoarias/genética , Toxoplasma/efectos de los fármacos , Toxoplasma/genética , Toxoplasmosis
20.
mSphere ; 5(1)2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-32051238

RESUMEN

The lysosome-like vacuolar compartment (VAC) is a major site of proteolysis in the intracellular parasite Toxoplasma gondii Previous studies have shown that genetic ablation of a VAC-residing cysteine protease, cathepsin protease L (CPL), resulted in the accumulation of undigested protein in the VAC and loss of parasite viability during the chronic stage of infection. However, since the maturation of another VAC localizing protease, cathepsin protease B (CPB), is dependent on CPL, it remained unknown whether these defects result directly from ablation of CPL or indirectly from a lack of CPB maturation. Likewise, although a previously described cathepsin D-like aspartyl protease 1 (ASP1) could also play a role in proteolysis, its definitive residence and function in the Toxoplasma endolysosomal system were not well defined. Here, we demonstrate that CPB is not necessary for protein turnover in the VAC and that CPB-deficient parasites have normal growth and viability in both the acute and chronic stages of infection. We also show that ASP1 depends on CPL for correct maturation, and it resides in the T. gondii VAC, where, similar to CPB, it plays a dispensable role in protein digestion. Taken together with previous work, our findings suggest that CPL is the dominant protease in a hierarchy of proteolytic enzymes within the VAC. This unusual lack of redundancy for CPL in T. gondii makes it a single exploitable target for disrupting chronic toxoplasmosis.IMPORTANCE Roughly one-third of the human population is chronically infected with the intracellular single-celled parasite Toxoplasma gondii, but little is known about how this organism persists inside people. Previous research suggested that a parasite proteolytic enzyme, termed cathepsin protease L, is important for Toxoplasma persistence; however, it remained possible that other associated proteolytic enzymes could also be involved in the long-term survival of the parasite during infection. Here, we show that two proteolytic enzymes associated with cathepsin protease L play dispensable roles and are dependent on cathepsin L to reach maturity, which differs from the corresponding enzymes in humans. These findings establish a divergent hierarchy of proteases and help focus attention principally on cathepsin protease L as a potential target for interrupting Toxoplasma chronic infection.


Asunto(s)
Proteasas de Ácido Aspártico/metabolismo , Catepsina B/metabolismo , Lisosomas/metabolismo , Proteínas Protozoarias/metabolismo , Toxoplasma/enzimología , Humanos , Estadios del Ciclo de Vida , Proteolisis , Toxoplasma/crecimiento & desarrollo , Vacuolas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA