Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-37873270

RESUMEN

Coronaviruses exhibit many mechanisms of genetic innovation1-5, including the acquisition of accessory genes that originate by capture of cellular genes or through duplication of existing viral genes6,7. Accessory genes influence viral host range and cellular tropism, but little is known about how selection acts on these variable regions of virus genomes. We used experimental evolution of mouse hepatitis virus (MHV) encoding a cellular AKAP7 phosphodiesterase and an inactive native phosphodiesterase, NS2 (ref 8) to simulate the capture of a host gene and analyze its evolution. After courses of serial infection, the gene encoding inactive NS2, ORF2, unexpectedly remained intact, suggesting it is under cryptic constraint uncoupled from the function of NS2. In contrast, AKAP7 was retained under strong selection but rapidly lost under relaxed selection. Guided by the retention of ORF2 and similar patterns in related betacoronaviruses, we analyzed ORF8 of SARS-CoV-2, which arose via gene duplication6 and contains premature stop codons in several globally successful lineages. As with MHV ORF2, the coding-defective SARS-CoV-2 ORF8 gene remains largely intact, mirroring patterns observed during MHV experimental evolution, challenging assumptions on the dynamics of gene loss in virus genomes and extending these findings to viruses currently adapting to humans.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA