Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 53(2): 240-242, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32814022

RESUMEN

A minor haplotype of chromosome 10q26 accounts for much of the genetic risk of age-related macular degeneration (AMD). In this issue of Immunity, Beguier et al. demonstrate that carriers of the 10q26 AMD-risk haplotype overexpress the peptidase HTRA1, which in turns results in mononuclear phagocyte persistence in an immune privileged site and pathogenic inflammation.


Asunto(s)
Degeneración Macular , Monocitos , Haplotipos , Serina Peptidasa A1 que Requiere Temperaturas Altas , Humanos , Inflamación , Degeneración Macular/genética , Proteínas , Retina , Serina Endopeptidasas/genética
2.
PLoS Pathog ; 18(7): e1010647, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35776778

RESUMEN

Staphylococcus aureus persistently colonises the anterior nares of a significant proportion of the healthy population, however the local immune response elicited during S. aureus nasal colonisation remains ill-defined. Local activation of IL-17/IL-22 producing T cells are critical for controlling bacterial clearance from the nasal cavity. However, recurrent and long-term colonisation is commonplace indicating efficient clearance does not invariably occur. Here we identify a central role for the regulatory cytokine IL-10 in facilitating bacterial persistence during S. aureus nasal colonisation in a murine model. IL-10 is produced rapidly within the nasal cavity following S. aureus colonisation, primarily by myeloid cells. Colonised IL-10-/- mice demonstrate enhanced IL-17+ and IL-22+ T cell responses and more rapidly clear bacteria from the nasal tissues as compared with wild-type mice. S. aureus also induces the regulatory cytokine IL-27 within the nasal tissue, which acts upstream of IL-10 promoting its production. IL-27 blockade reduces IL-10 production within the nasal cavity and improves bacterial clearance. TLR2 signalling was confirmed to be central to controlling the IL-10 response. Our findings conclude that during nasal colonisation S. aureus creates an immunosuppressive microenvironment through the local induction of IL-27 and IL-10, to dampen protective T cell responses and facilitate its persistence.


Asunto(s)
Interleucina-27 , Infecciones Estafilocócicas , Animales , Citocinas , Terapia de Inmunosupresión , Interleucina-10 , Interleucina-17 , Ratones , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus
3.
Exp Eye Res ; 217: 108953, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35090890

RESUMEN

As the resident immune cells in the retina, microglia play important homeostatic roles in retinal immune regulation and neuroprotection. However, chronic microglia activation is a common hallmark of many degenerative retinal diseases. The semi-synthetic tetracycline antibiotic, minocycline, appears to inhibit pro-inflammatory microglia which coincides with protection against photoreceptor cell degeneration. A sub-type of microglia termed disease associated microglia (DAM) have recently been associated with a wide range of central nervous system (CNS) diseases. In this study we examine the kinetics of microglia infiltration towards the outer retina of rhodopsin knockout mice (Rho-/-) by immunofluorescence, and undertake transcriptional and spatial localization analysis of markers for evidence of both homeostatic function and appearance of DAM. We demonstrate in the Rho-/- mice, IBA1+ and P2RY12+ microglia take on an activated morphology early in disease, prior to notable photoreceptor loss and are capable of infiltrating the subretinal space. Expression of lipid processing enzyme and DAM-marker lipoprotein lipase (LPL) is primarily observed only after microglia have traversed the ONL. Administration of minocycline to Rho-/- mice induced loss of phagocytic/DAM microglia in the outer retina in vivo coinciding with photoreceptor survival and amelioration of retinal degeneration. Overall, we show that minocycline suppresses many DAM markers, in particular those associated with lipid metabolism indicating that suppression of this process is one mechanism by which minocycline protects against inflammation induced photoreceptor cell death.


Asunto(s)
Degeneración Retiniana , Animales , Modelos Animales de Enfermedad , Ratones , Microglía/metabolismo , Minociclina/farmacología , Minociclina/uso terapéutico , Células Fotorreceptoras de Vertebrados/metabolismo , Retina , Degeneración Retiniana/tratamiento farmacológico , Degeneración Retiniana/metabolismo , Degeneración Retiniana/prevención & control
4.
Nat Immunol ; 10(6): 579-86, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19412184

RESUMEN

Toll-like receptor 4 (TLR4) signals the induction of transcription factor IRF3-dependent genes from the early endosome via the adaptor TRAM. Here we report a splice variant of TRAM, TAG ('TRAM adaptor with GOLD domain'), which has a Golgi dynamics domain coupled to TRAM's Toll-interleukin 1 receptor domain. After stimulation with lipopolysaccharide, TRAM and TAG localized to late endosomes positive for the GTPase Rab7a. TAG inhibited activation of IRF3 by lipopolysaccharide. Knockdown of TAG with small interfering RNA enhanced induction of the chemokine CCL5 (RANTES), but not of interleukin 8, by lipopolysaccharide in human peripheral blood mononuclear cells. TAG displaced the adaptor TRIF from TRAM. TAG is therefore an example of a specific inhibitor of the adaptor MyD88-independent pathway activated by TLR4. Targeting TAG could be useful in the effort to boost the immunostimulatory effect of TLR4 without causing unwanted inflammation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Endosomas/metabolismo , Factor 3 Regulador del Interferón/metabolismo , Receptor Toll-Like 4/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Quimiocina CCL5/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Lipopolisacáridos/metabolismo , Ratones , Datos de Secuencia Molecular , Factor 88 de Diferenciación Mieloide/metabolismo , Isoformas de Proteínas , Estructura Terciaria de Proteína , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Especificidad por Sustrato , Transfección , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión a GTP rab7
5.
Thorax ; 75(6): 449-458, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32265339

RESUMEN

RATIONALE: Mutations in the cystic fibrosis transmembrane regulator (CFTR) gene form the basis of cystic fibrosis (CF). There remains an important knowledge gap in CF as to how diminished CFTR activity leads to the dominant inflammatory response within CF airways. OBJECTIVES: To investigate if extracellular vesicles (EVs) contribute to inflammatory signalling in CF. METHODS: EVs released from CFBE41o-, CuFi-5, 16HBE14o- and NuLi-1 cells were characterised by nanoparticle tracking analysis (NTA). EVs isolated from bronchoalveolar lavage fluid (BALF) from 30 people with CF (PWCF) were analysed by NTA and mass spectrometry and compared with controls. Neutrophils were isolated from the blood of 8 PWCF to examine neutrophil migration in the presence of CFBE41o- EVs. RESULTS: A significantly higher level of EVs were released from CFBE41o- (p<0.0001) and CuFi-5 (p=0.0209) relative to control cell lines. A significantly higher level of EVs were detected in BALF of PWCF, in three different age groups relative to controls (p=0.01, 0.001, 0.002). A significantly lower level of EVs were released from CFBE41o- (p<0.001) and CuFi-5 (p=0.0002) cell lines treated with CFTR modulators. Significant changes in the protein expression of 126 unique proteins was determined in EVs obtained from the BALF of PWCF of different age groups (p<0.001-0.05). A significant increase in chemotaxis of neutrophils derived from PWCF was observed in the presence of CFBE41o EVs (p=0.0024) compared with controls. CONCLUSION: This study demonstrates that EVs are produced in CF airway cells, have differential protein expression at different ages and drive neutrophil recruitment in CF.


Asunto(s)
Fibrosis Quística/metabolismo , Vesículas Extracelulares/metabolismo , Adolescente , Adulto , Factores de Edad , Líquido del Lavado Bronquioalveolar/química , Línea Celular , Movimiento Celular , Células Cultivadas , Quimiotaxis , Niño , Preescolar , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Femenino , Humanos , Lactante , Masculino , Espectrometría de Masas , Nanopartículas , Neutrófilos/metabolismo , Proyectos Piloto , Transducción de Señal , Transfección
6.
J Immunol ; 201(4): 1131-1143, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29980613

RESUMEN

Two million infants die each year from infectious diseases before they reach 12 mo; many of these diseases are vaccine preventable in older populations. Pattern recognition receptors represent the critical front-line defense against pathogens. Evidence suggests that the innate immune system does not fully develop until puberty, contributing to impaired response to infection and impaired vaccine responses in neonates, infants, and children. The activity of the pattern recognition receptor family of cytosolic nucleic acid (CNA) sensors in this pediatric population has not been reported. We show that in direct contrast to weak TLR-induced type I IFN in human cord blood mononuclear cells, cord blood mononuclear cells are capable of initiating a potent response to CNA, inducing both antiviral type I IFN and, unexpectedly, proinflammatory TNF-α. A deficiency in Rab11-GTPase endosome formation and consequent lack of IRF3 activation in neonatal monocytes is at least in part responsible for the marked disparity in TLR-induced IFN production between neonatal and adult monocytes. CNA receptors do not rely on endosome formation, and therefore, these responses remain intact in neonates. Heightened neonatal responses to CNA challenge are maintained in children up to 2 y of age and, in marked contrast to TLR4/9 agonists, result in IL-12p70 and IFN-γ generation. CNA sensors induce robust antiviral and proinflammatory pathways in neonates and children and possess great potential for use as immunostimulants or vaccine adjuvants for targeted neonatal and pediatric populations to promote cell-mediated immunity against invasive infectious disease.


Asunto(s)
Endosomas/metabolismo , Interferón Tipo I/metabolismo , Leucocitos Mononucleares/fisiología , Adulto , Células Cultivadas , Preescolar , Citocinas/metabolismo , Citosol/metabolismo , ADN Viral/inmunología , Sangre Fetal/citología , Humanos , Lactante , Recién Nacido , Mediadores de Inflamación/metabolismo , Factor 3 Regulador del Interferón/metabolismo , Transducción de Señal , Receptores Toll-Like/metabolismo
7.
Cytokine ; 119: 152-158, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30909151

RESUMEN

Almost a third of Irish children are now overweight and the country ranks 58th out of 200 countries for its proportion of overweight youths. With the rising obesity epidemic, and the impaired immune responses of this population, it is vital to understand the effects that obesity has on the immune system and to design future therapeutics, adjuvants and vaccines with overweight and obese populations in mind. Many current vaccines use adjuvants that have been found to be less effective at stimulating the immune response in children compared with adults and there is now substantial effort to design paediatric-focused adjuvants. Additionally, vaccine responses have been shown to be less effective in obese populations indicating that this is a particularly vulnerable population. We have recently identified cytosolic nucleic acids (CNAs), as novel candidate adjuvants for childhood vaccines. Here we investigated whether immune responses to these candidate adjuvants were adversely affected in infants born to overweight or obese mothers, and in overweight and obese children. Type I Interferon (IFN) and proinflammatory cytokines such as Tumor Necrosis Factor α (TNFα) are vital for driving innate and adaptive immune responses. We found that childhood obesity conferred no significant adverse effect on CNA-induced Type I IFN responses when compared with lean children. Similarly, Type I IFN responses were intact in the cord blood of babies delivered from overweight and obese mothers, when compared with lean mothers. There was also no significant impact of obesity on CNA-induced TNFα responses in children or from cord blood of infants born to overweight/obese mothers. In all cases, there was a tendency towards decreased production of innate cytokine Type I Interferon and TNFα, however there was no significant negative correlation. Interestingly, high maternal BMI showed weak and moderate positive correlation with IL-12p70 and IFNγ, respectively, in response to CNA stimulation. This study demonstrates that future adjuvants can be tailored for these populations through the use of activators of CNA sensors.


Asunto(s)
Citocinas/metabolismo , Ácidos Nucleicos/metabolismo , Sobrepeso/metabolismo , Obesidad Infantil/metabolismo , Adulto , Índice de Masa Corporal , Niño , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Madres
8.
J Pathol ; 241(1): 45-56, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27701734

RESUMEN

Age-related macular degeneration (AMD) is the leading cause of central vision loss worldwide. Loss of retinal pigment epithelium (RPE) is a major pathological hallmark in AMD with or without pathological neovascularization. Although activation of the immune system is implicated in disease progression, pathological pathways remain diverse and unclear. Here, we report an unexpected protective role of a pro-inflammatory cytokine, interleukin-33 (IL-33), in ocular angiogenesis. IL-33 and its receptor (ST2) are expressed constitutively in human and murine retina and choroid. When RPE was activated, IL-33 expression was markedly elevated in vitro. We found that IL-33 regulated tissue remodelling by attenuating wound-healing responses, including reduction in the migration of choroidal fibroblasts and retinal microvascular endothelial cells, and inhibition of collagen gel contraction. In vivo, local administration of recombinant IL-33 inhibited murine choroidal neovascularization (CNV) formation, a surrogate of human neovascular AMD, and this effect was ST2-dependent. Collectively, these data demonstrate IL-33 as a potential immunotherapy and distinguishes pathways for subverting AMD pathology. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Asunto(s)
Interleucina-33/inmunología , Degeneración Macular/inmunología , Adolescente , Adulto , Anciano , Animales , Células Cultivadas , Coroides/inmunología , Neovascularización Coroidal/tratamiento farmacológico , Neovascularización Coroidal/inmunología , Fibroblastos/inmunología , Humanos , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Interleucina-33/uso terapéutico , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Proteínas Recombinantes/uso terapéutico , Epitelio Pigmentado de la Retina/inmunología , Adulto Joven
9.
J Immunol ; 193(12): 6090-102, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25385819

RESUMEN

Detection of microbes by TLRs on the plasma membrane leads to the induction of proinflammatory cytokines such as TNF-α, via activation of NF-κB. Alternatively, activation of endosomal TLRs leads to the induction of type I IFNs via IFN regulatory factors (IRFs). TLR4 signaling from the plasma membrane to NF-κB via the Toll/IL-1R (TIR) adaptor protein MyD88 requires the TIR sorting adaptor Mal, whereas endosomal TLR4 signaling to IRF3 via the TIR domain-containing adaptor-inducing IFN-ß (TRIF) requires the TRIF-related adaptor molecule (TRAM). Similar to TLR4 homodimers, TLR2 heterodimers can also induce both proinflammatory cytokines and type I IFNs. TLR2 plasma membrane signaling to NF-κB is known to require MyD88 and Mal, whereas endosomal IRF activation by TLR2 requires MyD88. However, it was unclear whether TLR2 requires a sorting adaptor for endosomal signaling, like TLR4 does. In this study, we show that TLR2-dependent IRF7 activation at the endosome is both Mal- and TRAM-dependent, and that TRAM is required for the TLR2-dependent movement of MyD88 to endosomes following ligand engagement. TRAM interacted with both TLR2 and MyD88, suggesting that TRAM can act as a bridging adapter between these two molecules. Furthermore, infection of macrophages lacking TRAM with herpes viruses or the bacterium Staphylococcus aureus led to impaired induction of type I IFN, indicating a role for TRAM in TLR2-dependent responses to human pathogens. Our work reveals that TRAM acts as a sorting adaptor not only for TLR4, but also for TLR2, to facilitate signaling to IRF7 at the endosome, which explains how TLR2 is capable of causing type I IFN induction.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Endosomas/metabolismo , Interferón Tipo I/biosíntesis , Transducción de Señal , Receptor Toll-Like 2/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Línea Celular , Endocitosis , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , Factor 7 Regulador del Interferón/metabolismo , Interferón beta/biosíntesis , Espacio Intracelular/metabolismo , Glicoproteínas de Membrana/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Péptidos/farmacología , Unión Proteica , Transporte de Proteínas , Receptores de Interleucina-1/metabolismo , Receptor Toll-Like 2/antagonistas & inhibidores , Receptor Toll-Like 2/genética , Receptor Toll-Like 4/química , Receptor Toll-Like 4/metabolismo
10.
J Biol Chem ; 288(35): 25066-25075, 2013 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-23873932

RESUMEN

In this study we describe a previously unreported function for NFκB2, an NFκB family transcription factor, in antiviral immunity. NFκB2 is induced in response to poly(I:C), a mimic of viral dsRNA. Poly(I:C), acting via TLR3, induces p52-dependent transactivation of a reporter gene in a manner that requires the kinase activity of IκB kinase ε (IKKε) and the transactivating potential of RelA/p65. We identify a novel NFκB2 binding site in the promoter of the transcription factor Sp1 that is required for Sp1 gene transcription activated by poly(I:C). We show that Sp1 is required for IL-15 induction by both poly(I:C) and respiratory syncytial virus, a response that also requires NFκB2 and IKKε. Our study identifies NFκB2 as a target for IKKε in antiviral immunity and describes, for the first time, a role for NFκB2 in the regulation of gene expression in response to viral infection.


Asunto(s)
Quinasa I-kappa B/inmunología , Interleucina-15/metabolismo , Subunidad p52 de NF-kappa B/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Virus Sincitiales Respiratorios/inmunología , Factor de Transcripción Sp1/inmunología , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/inmunología , Células HEK293 , Humanos , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Inductores de Interferón/farmacología , Interleucina-15/genética , Ratones , Ratones Noqueados , Subunidad p52 de NF-kappa B/genética , Subunidad p52 de NF-kappa B/metabolismo , Poli I-C/farmacología , Infecciones por Virus Sincitial Respiratorio/genética , Infecciones por Virus Sincitial Respiratorio/metabolismo , Infecciones por Virus Sincitial Respiratorio/patología , Virus Sincitiales Respiratorios/genética , Virus Sincitiales Respiratorios/metabolismo , Elementos de Respuesta/genética , Elementos de Respuesta/inmunología , Factor de Transcripción Sp1/biosíntesis , Factor de Transcripción Sp1/genética , Receptor Toll-Like 3/genética , Receptor Toll-Like 3/inmunología , Receptor Toll-Like 3/metabolismo , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/inmunología , Factor de Transcripción ReIA/metabolismo
11.
Adv Exp Med Biol ; 801: 229-35, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24664703

RESUMEN

Age-related macular degeneration (AMD) is the leading cause of legal blindness in elderly individuals in the developed world, affecting 30-50 million people worldwide. AMD primarily affects the macular region of the retina that is responsible for the majority of central, color and daytime vision. The presence of drusen, extracellular protein aggregates that accumulate under the retinal pigment epithelium (RPE), is a major pathological hallmark in the early stages of the disease. The end stage 'dry' and 'wet' forms of the disease culminate in vision loss and are characterized by focal degeneration of the RPE and cone photoreceptors, and choroidal neovascularization (CNV), respectively. Being a multifactorial and genetically heterogeneous disease, the pathophysiology of AMD remains unclear, yet, there is ample evidence supporting immunological and inflammatory processes. Here, we review the recent literature implicating some of these immune processes in human AMD and in animal models.


Asunto(s)
Inflamación/inmunología , Degeneración Macular/inmunología , Drusas del Disco Óptico/inmunología , Retinitis/inmunología , Transducción de Señal/inmunología , Humanos
12.
Adv Exp Med Biol ; 801: 409-15, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24664725

RESUMEN

Age-related macular degeneration (AMD) is the leading cause of central vision loss worldwide and while polymorphisms in genes associated with the immune system have been identified as risk factors for disease development, the underlying pathways and mechanisms involved in disease progression have remained unclear. In AMD, localised inflammatory responses related to particulate matter accumulation and subsequent "sterile" inflammation has recently gained considerable interest amongst basic researchers and clinicians alike. Typically, inflammatory responses in the human body are caused as a result of bacterial or viral infection, however in chronic conditions such as AMD, extracellular particulate matter such as drusen can be "sensed" by the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome, culminating in the release of the two pro-inflammatory cytokines IL-1ß and IL-18 in the delicate local tissue of the retina. Identification at the molecular level of mediators of the inflammatory response in AMD may yield novel therapeutic approaches to this common and often severe form of blindness. Here, we will describe the role of IL-18 in AMD and other forms of retinal disorders. We will outline some of the key functions of IL-18 as it pertains to maintaining tissue homeostasis in a healthy and degenerating/diseased retina.


Asunto(s)
Inflamasomas/inmunología , Interleucina-18/inmunología , Degeneración Macular/inmunología , Degeneración Retiniana/inmunología , Retinitis/inmunología , Humanos
13.
Invest Ophthalmol Vis Sci ; 65(6): 24, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38874963

RESUMEN

Purpose: To examine if changes in hemodynamic measures during an orthostatic challenge were associated with progression of age-related macular degeneration (AMD) over a 4-year period in The Irish Longitudinal Study on Ageing. Methods: Participants with AMD who underwent an active stand (AS) test at wave 1 (2009/2010) and retinal photographs at both wave 1 and wave 3 (2014/2015) were included (N = 159: 121 with no AMD progression and 38 with progression). Beat-to-beat hemodynamic data were non-invasively collected using a Finometer MIDI device during the AS at wave 1, recording systolic blood pressure (sBP), diastolic blood pressure (dBP), mean arterial pressure (MAP), and heart rate. Cardiac output, stroke volume, and total peripheral resistance (TPR) were derived from these measures. Baseline characteristics were compared between groups with and without AMD progression. Mixed-effects linear regression models were used to assess the association between changes in hemodynamic parameters during the AS and AMD progression, controlling for known AMD-associated risk factors. Results: At baseline, increasing age and lower dBP were significantly associated with AMD progression. Mixed-effects models for the period between standing and 10 seconds post-stand revealed significant associations with AMD progression with a steeper drop in dBP and a slower drop in TPR. Between 10 and 20 seconds post-stand, AMD progression was significantly associated with less pronounced reduction in heart rate. Conclusions: These observational data suggest that impaired hemodynamic responses within the first 20 seconds of orthostasis may be associated with the progression of AMD.


Asunto(s)
Envejecimiento , Presión Sanguínea , Progresión de la Enfermedad , Frecuencia Cardíaca , Degeneración Macular , Humanos , Masculino , Femenino , Anciano , Degeneración Macular/fisiopatología , Irlanda/epidemiología , Frecuencia Cardíaca/fisiología , Envejecimiento/fisiología , Presión Sanguínea/fisiología , Estudios Longitudinales , Sistema Nervioso Autónomo/fisiopatología , Anciano de 80 o más Años , Hemodinámica/fisiología , Persona de Mediana Edad , Factores de Riesgo
14.
Sci Rep ; 14(1): 16055, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992196

RESUMEN

Immunological adaptions during pregnancy play a crucial role in healthy fetal development. Aberrant immune modifications however contribute to adverse pregnancy outcomes, which may be driven by maternal factors such as previous pregnancies and BMI. This secondary analysis of the MicrobeMom2 RCT investigates the changes to maternal inflammatory biomarkers derived from serum and stimulated peripheral blood mononuclear cells (PBMCs) during pregnancy, and the effects of previous pregnancies (parity) and BMI on maternal immune responses. Changes in immune and metabolic biomarkers from early (11-15 weeks' gestation) to late (28-32 weeks' gestation) pregnancy were compared using paired t-tests. Participants were then split by parity (nulliparous, parous) and BMI (BMI < 25, BMI > = 25), and the relationship between parity and BMI with immune biomarker levels was examined using independent t-tests, paired t-tests, ANCOVA, and linear regression. Equivalent non-parametric tests were used for skewed data. Recruited women (n = 72) were on average 31.17 (SD ± 4.53) years of age and 25.11 (SD ± 3.82) BMI (kg/m2). Of these, 51 (70.8%) had a previous term pregnancy. Throughout gestation, PBMC cytokines displayed contrasting trends to serum, with a dampening of immune responses noted in PBMCs, and enhanced production of cytokines observed in the serum. Significant decreases in PBMC derived TNF-α, IL-10 and IFN-γ were seen from early to late pregnancy. Serum C3, IL-17A, IL-6, TNF-α, CD163, GDF-15 and leptin increased throughout gestation. First pregnancy was associated with higher levels of leptin in late pregnancy, while parous women showed significant decreases in PBMC derived TNF-α, IL10, and IFN-γ with gestation. Differences in levels of C3, IL-17A, TNF-α, GDF-15 and leptin were observed across BMI groups. Overall, serum-derived cytokines exhibit contrasting levels to those derived from stimulated PBMCs. Maternal immune responses undergo significant changes from early to late pregnancy, which are influenced by parity and BMI. These differences aid our understanding as to why first-time mothers are at greater risk of placental disease such as pre-eclampsia and fetal growth restriction.


Asunto(s)
Biomarcadores , Índice de Masa Corporal , Leucocitos Mononucleares , Humanos , Femenino , Embarazo , Adulto , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Biomarcadores/sangre , Paridad , Citocinas/sangre
16.
Pharmacol Rev ; 61(2): 177-97, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19474110

RESUMEN

Since first being described in the fruit fly Drosophila melanogaster, Toll-like receptors (TLRs) have proven to be of great interest to immunologists and investigators interested in the molecular basis to inflammation. They recognize pathogen-derived factors and also products of inflamed tissue, and trigger signaling pathways that lead to activation of transcription factors such as nuclear factor-kappaB and the interferon regulatory factors. These in turn lead to induction of immune and inflammatory genes, including such important cytokines as tumor necrosis factor-alpha and type I interferon. Much evidence points to a role for TLRs in immune and inflammatory diseases and increasingly in cancer. Examples include clear roles for TLR4 in sepsis, rheumatoid arthritis, ischemia/reperfusion injury, and allergy. TLR2 has been implicated in similar pathologic conditions and also in systemic lupus erythematosus (SLE) and tumor metastasis. TLR7 has also been shown to be important in SLE. TLR5 has been shown to be radioprotective. Recent advances in our understanding of signaling pathways activated by TLRs, structural insights into TLRs bound to their ligands and antagonists, and approaches to inhibit TLRs (including antibodies, peptides, and small molecules) are providing possiblemeans by which to interfere with TLRs clinically. Here we review these recent advances and speculate about whether manipulating TLRs is likely to be successful in fighting off different diseases.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Infecciones/metabolismo , Mediadores de Inflamación/metabolismo , Neoplasias/metabolismo , Receptores Toll-Like/metabolismo , Animales , Humanos , Infecciones/tratamiento farmacológico , Infecciones/patología , Mediadores de Inflamación/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Receptores Toll-Like/química
17.
Front Neurosci ; 16: 852114, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35431772

RESUMEN

SARM1 (sterile alpha and armadillo motif-containing protein) is a highly conserved Toll/IL-1 Receptor (TIR) adaptor with important roles in mediating immune responses. Studies in the brain have shown that SARM1 plays a role in induction of neuronal axon degeneration in response to a variety of injuries. We recently demonstrated that SARM1 is pro-degenerative in a genetic model of inherited retinopathy. This current study aimed to characterise the effect of SARM1 deletion in an alternative model of retinal degeneration (RD) in which the retinal pigment epithelium (RPE) fragments following administration of oxidising agent, sodium iodate (NaIO3), leading to subsequent photoreceptor cell death. Following administration of NaIO3, we observed no apparent difference in rate of loss of RPE integrity in SARM1 deficient mice compared to WT counterparts. However, despite no differences in RPE degeneration, photoreceptor cell number and retinal thickness were increased in Sarm1-/- mice compared to WT counterparts. This apparent protection of the photoreceptors in SARM1 deficient mice is supported by an observed decrease in pro-apoptotic caspase-3 in the photoreceptor layer of Sarm1-/- mice compared to WT. Together these data indicate a pro-degenerative role for SARM1 in the photoreceptors, but not in the RPE, in an oxidative stress induced model of retinal degeneration consistent with its known degenerative role in neurons in a range of neurodegenerative settings.

18.
J Leukoc Biol ; 112(3): 523-537, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35098572

RESUMEN

Pattern recognition receptors (PRRs) of the innate immune system represent the critical front-line defense against pathogens, and new vaccine formulations target these PRR pathways to boost vaccine responses, through activation of cellular/Th1 immunity. The majority of pediatric vaccines contain aluminum (ALUM) or monophosphoryl lipid A (MPLA) as adjuvants to encourage immune activation. Evidence suggests that elements of the innate immune system, currently being targeted for vaccine adjuvanticity do not fully develop until puberty and it is likely that effective adjuvants for the neonatal and pediatric populations are being overlooked due to modeling of responses in adult systems. We recently reported that the activity of the cytosolic nucleic acid (CNA) sensing family of PRRs is strong in cord blood and peripheral blood of young children. This study investigates the function of CNA sensors in subsets of neonatal innate immune cells and shows that myeloid cells from cord blood can be activated to express T cell costimulatory markers, and also to produce Th1 promoting cytokines. CD80 and CD86 were consistently up-regulated in response to cytosolic Poly(I:C) stimulation in all cell types examined and CNA activation also induced robust Type I IFN and low levels of TNFα in monocytes, monocyte-derived macrophages, and monocyte-derived dendritic cells. We have compared CNA activation to adjuvants currently in use (MPLA or ALUM), either alone or in combination and found that cytosolic Poly(I:C) in combination with MPLA or ALUM can improve expression of activation marker levels above those observed with either adjuvant alone. This may prove particularly promising in the context of improving the efficacy of existing ALUM- or MPLA-containing vaccines, through activation of T cell-mediated immunity.


Asunto(s)
Adyuvantes Inmunológicos , Vacunas , Adyuvantes Inmunológicos/farmacología , Adulto , Niño , Preescolar , Citocinas/metabolismo , Humanos , Inmunidad Celular , Inmunidad Innata , Recién Nacido , Poli I-C , Receptores de Reconocimiento de Patrones
19.
J Biol Chem ; 285(27): 20492-8, 2010 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-20435894

RESUMEN

IL-10 is a potent anti-inflammatory cytokine that is crucial for down-regulating pro-inflammatory genes, which are induced by Toll-like receptor (TLR) signaling. In this study, we have examined whether modulation of microRNAs plays a role in the inhibitory effect of IL-10 on TLR4 signaling. Analyzing microRNAs known to be induced by TLR4, we found that IL-10 could inhibit the expression of miR-155 in response to lipopolysaccharide but had no effect on miR-21 or miR-146a. IL-10 inhibited miR-155 transcription from the BIC gene in a STAT3-dependent manner. This inhibitory effect of IL-10 on miR-155 led to an increase in the expression of the miR-155 target, SHIP1. This is the first example of IL-10 playing a role in microRNA function and suggests that through its inhibitory effect on miR-155, IL-10 has the ability to promote anti-inflammatory gene expression.


Asunto(s)
Interleucina-10/farmacología , MicroARNs/genética , Receptor Toll-Like 4/fisiología , Animales , ADN Complementario/genética , Ensayo de Inmunoadsorción Enzimática/métodos , Genes Reporteros , Humanos , Cinética , Luciferasas/genética , Ratones , MicroARNs/antagonistas & inhibidores , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción STAT3/fisiología , Transcripción Genética/efectos de los fármacos
20.
Bio Protoc ; 11(4): e3916, 2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33732803

RESUMEN

Initiation of the complement system results in the formation of a multiprotein pore termed the membrane attack complex (MAC, C5b-C9). MAC pores accumulate on a cell surface and can result in cell lysis. The retinal pigment epithelium (RPE) is a single monolayer of pigmented epithelial cells located at the posterior poll of the eye that forms the outer blood retinal barrier. RPE cells are highly polarized with apical microvilli and basolateral contact with Bruch's membrane. In order to obtain biologically relevant polarized RPE cultures in vitro, RPE cells are seeded onto the apical side of a transwell filter and cultured for 4 weeks in low serum media. MAC formation on RPE cells has been reported to be sub-lytic. MAC formation can be achieved in vitro by introduction of normal human serum (NHS) to media following serum starvation for 24 h. NHS contains all serum complement proteins required to initiate complement activation and MAC formation. We combined in vitro RPE polarization and complement activation to visualize MAC formation in vitro utilizing confocal microscopy allowing for high resolution MAC imaging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA