Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Ecol ; 22(21): 5271-7, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24112409

RESUMEN

The nuclear ribosomal internal transcribed spacer (ITS) region is the formal fungal barcode and in most cases the marker of choice for the exploration of fungal diversity in environmental samples. Two problems are particularly acute in the pursuit of satisfactory taxonomic assignment of newly generated ITS sequences: (i) the lack of an inclusive, reliable public reference data set and (ii) the lack of means to refer to fungal species, for which no Latin name is available in a standardized stable way. Here, we report on progress in these regards through further development of the UNITE database (http://unite.ut.ee) for molecular identification of fungi. All fungal species represented by at least two ITS sequences in the international nucleotide sequence databases are now given a unique, stable name of the accession number type (e.g. Hymenoscyphus pseudoalbidus|GU586904|SH133781.05FU), and their taxonomic and ecological annotations were corrected as far as possible through a distributed, third-party annotation effort. We introduce the term 'species hypothesis' (SH) for the taxa discovered in clustering on different similarity thresholds (97-99%). An automatically or manually designated sequence is chosen to represent each such SH. These reference sequences are released (http://unite.ut.ee/repository.php) for use by the scientific community in, for example, local sequence similarity searches and in the QIIME pipeline. The system and the data will be updated automatically as the number of public fungal ITS sequences grows. We invite everybody in the position to improve the annotation or metadata associated with their particular fungal lineages of expertise to do so through the new Web-based sequence management system in UNITE.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Hongos/clasificación , Filogenia , Código de Barras del ADN Taxonómico , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética , Hongos/genética , Internet
2.
Sci Total Environ ; 851(Pt 1): 158173, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-35988616

RESUMEN

We studied long-term effects of forest fires on the dynamics of soil fungal community along a post-fire chronosequence in hemiboreal Scots pine stands in north-western Estonia. Effects of fire on soil and fungi were studied on six sites that differed in time since fire (10, 21, 36, 67, 78 and 181 years ago), without further management interventions. Soil fungal communities along the chronosequence were dominated by soil saprotrophs and ectomycorrhizal (EcM) fungi. Across the chronosequence, the most dominant phylum was Ascomycota. The most abundant OTUs were identified as Umbelopsis sp., Hyaloscyphaceae sp. and Pezoloma ericae with relative abundances of 9.5, 8.9 and 6.8 %, respectively. Fungal species richness was similar among sample areas except in the area where fire occurred 36 years ago, where it was significantly lower. There were considerable differences in EcM fungal species composition along the chronosequence. The most recently burned site had Piloderma sphaerosporum, Pseudotomentella sp. and Clavulinaceae sp. as most abundant EcM OTUs while in three oldest burned areas Clavulinaceae sp. and Cortinarius sp. were abundant. Soil C and N stocks were lower in the most recently burned area but differences with other areas were not statistically significant. Soil pH had a significant effect on fungal species composition. Older areas had substantially lower pH compared to more recently burned areas.


Asunto(s)
Incendios , Micobioma , Micorrizas , Pinus sylvestris , Incendios Forestales , Bosques , Suelo/química
3.
Front Microbiol ; 11: 1953, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013735

RESUMEN

Soil microbiome has a pivotal role in ecosystem functioning, yet little is known about its build-up from local to regional scales. In a multi-year regional-scale survey involving 1251 plots and long-read third-generation sequencing, we found that soil pH has the strongest effect on the diversity of fungi and its multiple taxonomic and functional groups. The pH effects were typically unimodal, usually both direct and indirect through tree species, soil nutrients or mold abundance. Individual tree species, particularly Pinus sylvestris, Picea abies, and Populus x wettsteinii, and overall ectomycorrhizal plant proportion had relatively stronger effects on the diversity of biotrophic fungi than saprotrophic fungi. We found strong temporal sampling and investigator biases for the abundance of molds, but generally all spatial, temporal and microclimatic effects were weak. Richness of fungi and several functional groups was highest in woodlands and around ruins of buildings but lowest in bogs, with marked group-specific trends. In contrast to our expectations, diversity of soil fungi tended to be higher in forest island habitats potentially due to the edge effect, but fungal richness declined with island distance and in response to forest fragmentation. Virgin forests supported somewhat higher fungal diversity than old non-pristine forests, but there were no differences in richness between natural and anthropogenic habitats such as parks and coppiced gardens. Diversity of most fungal groups suffered from management of seminatural woodlands and parks and thinning of forests, but especially for forests the results depended on fungal group and time since partial harvesting. We conclude that the positive effects of tree diversity on overall fungal richness represent a combined niche effect of soil properties and intimate associations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA