Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
New Phytol ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39294895

RESUMEN

Certain species in the Brassicaceae family exhibit high photosynthesis rates, potentially providing a valuable route toward improving agricultural productivity. However, factors contributing to their high photosynthesis rates are still unknown. We compared Hirschfeldia incana, Brassica nigra, Brassica rapa and Arabidopsis thaliana, grown under two contrasting light intensities. Hirschfeldia incana matched B. nigra and B. rapa in achieving very high photosynthesis rates under high growth-light condition, outperforming A. thaliana. Photosynthesis was relatively more limited by maximum photosynthesis capacity in H. incana and B. rapa and by mesophyll conductance in A. thaliana and B. nigra. Leaf traits such as greater exposed mesophyll specific surface enabled by thicker leaf or high-density small palisade cells contributed to the variation in mesophyll conductance among the species. The species exhibited contrasting leaf construction strategies and acclimation responses to low light intensity. High-light plants distributed Chl deeper in leaf tissue, ensuring even distribution of photosynthesis capacity, unlike low-light plants. Leaf anatomy of H. incana, B. nigra and B. rapa facilitated effective CO2 diffusion, efficient light use and provided ample volume for their high maximum photosynthetic capacity, indicating that a combination of adaptations is required to increase CO2-assimilation rates in plants.

2.
Plant Cell Environ ; 47(9): 3344-3364, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38321805

RESUMEN

Gas exchange measurements enable mechanistic insights into the processes that underpin carbon and water fluxes in plant leaves which in turn inform understanding of related processes at a range of scales from individual cells to entire ecosytems. Given the importance of photosynthesis for the global climate discussion it is important to (a) foster a basic understanding of the fundamental principles underpinning the experimental methods used by the broad community, and (b) ensure best practice and correct data interpretation within the research community. In this review, we outline the biochemical and biophysical parameters of photosynthesis that can be investigated with gas exchange measurements and we provide step-by-step guidance on how to reliably measure them. We advise on best practices for using gas exchange equipment and highlight potential pitfalls in experimental design and data interpretation. The Supporting Information contains exemplary data sets, experimental protocols and data-modelling routines. This review is a community effort to equip both the experimental researcher and the data modeller with a solid understanding of the theoretical basis of gas-exchange measurements, the rationale behind different experimental protocols and the approaches to data interpretation.


Asunto(s)
Fotosíntesis , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Hojas de la Planta/metabolismo , Dióxido de Carbono/metabolismo , Plantas/metabolismo
3.
Ann Bot ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38946023

RESUMEN

BACKGROUND AND AIMS: Long-term exposure over several days to Far-Red (FR) increases leaf expansion, while short-term exposure (minutes) may enhance the PSII operating efficiency (ϕPSII). The interaction between these responses at different time scales, and their impact on photosynthesis at whole-plant level is not well understood. Our study aimed to assess the effects of FR in an irradiance mimicking the spectrum of sunlight (referred to as artificial solar irradiance) both in the long and short-term, on whole-plant CO2 assimilation rates and in leaves at different positions in the plant. METHODS: Tomato (Solanum lycopersicum) plants were grown under artificial solar irradiance conditions with either a severely reduced or normal fraction of FR(SUN(FR-) vs. SUN). To elucidate the interplay between the growth light treatment and the short-term reduction of FR, we investigated this interaction at both the whole-plant and leaf level. At whole-plant level, CO2 assimilation rates were assessed under artificial solar irradiance with a normal and a reduced fraction of FR. At the leaf level, the effects of removal and presence of FR (0FR and 60FR) during transition from high to low light on CO2 assimilation rates and chlorophyll fluorescence were evaluated in upper and lower leaves. KEY RESULTS: SUN(FR-) plants had lower leaf area, shorter stems, and darker leaves than SUN plants. While reducing FR during growth did not affect whole-plant photosynthesis under high light intensity, it had a negative impact at low light intensity. Short-term FR removal reduced both plant and leaf CO2 assimilation rates, but only at low light intensity and irrespective of the growth light treatment and leaf position. Interestingly, the kinetics of ϕPSII from high to low light were accelerated by 60FR, with a larger effect in lower leaves of SUN than in SUN(FR-) plants. CONCLUSIONS: Growing plants with a reduced amount of FR light lowers whole-plant CO2 assimilation rates at low light intensity through reduced leaf area, despite maintaining similar leaf-level CO2 assimilation to leaves grown with a normal amount of FR. The short-term removal of FR brings about significant but marginal reductions in photosynthetic efficiency at the leaf level, regardless of the long-term growth light treatment.

4.
Ann Bot ; 133(2): 365-378, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38099505

RESUMEN

BACKGROUND AND AIMS: Plants can propagate generatively and vegetatively. The type of propagation and the resulting propagule can influence the growth of the plants, such as plant architectural development and pattern of biomass allocation. Potato is a species that can reproduce through both types of propagation: through true botanical seeds and seed tubers. The consequences of propagule type on the plant architectural development and biomass partitioning in potatoes are not well known. We quantified architectural differences between plants grown from these two types of propagules from the same genotype, explicitly analysing branching dynamics above and below ground, and related these differences to biomass allocation patterns. METHODS: A greenhouse experiment was conducted, using potato plants of the same genotype but grown from two types of propagules: true seeds and seed tubers from a plant grown from true seed (seedling tuber). Architectural traits and biomass allocation to different organs were quantified at four developmental stages. Differences between true-seed-grown and seedling-tuber-grown plants were compared at the whole-plant level and at the level of individual stems and branches, including their number, size and location on the plant. KEY RESULTS: A more branched and compact architecture was produced in true-seed-grown plants compared with seedling-tuber-grown plants. The architectural differences between plants grown from true seeds and seedling tubers appeared gradually and were attributed mainly to the divergent temporal-spatial distribution of lateral branches above and below ground on the main axis. The continual production of branches in true-seed-grown plants indicated their indeterminate growth habit, which was also reflected in a slower shift of biomass allocation from above- to below-ground branches, whereas the opposite trend was found in seedling-tuber-grown plants. CONCLUSIONS: In true-seed-grown plants, lateral branching was stronger and determined whole-plant architecture and plant function with regard to light interception and biomass production, compared with seedling-tuber-grown plants. This different role of branching indicates that a difference in preference between clonal and sexual reproduction might exist. The divergent branching behaviours in true-seed-grown and seedling-tuber-grown plants might be regulated by the different intensity of apical dominance, which suggests that the control of branching can depend on the propagule type.


Asunto(s)
Solanum tuberosum , Solanum tuberosum/genética , Tubérculos de la Planta , Fenotipo , Genotipo , Desarrollo de la Planta , Plantones
5.
New Phytol ; 239(6): 2197-2211, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37357337

RESUMEN

Improving photosynthetic efficiency has recently emerged as a promising way to increase crop production in a sustainable manner. While chloroplast size may affect photosynthetic efficiency in several ways, we aimed to explore whether chloroplast size manipulation can be a viable approach to improving photosynthetic performance. Several tobacco (Nicotiana tabacum) lines with contrasting chloroplast sizes were generated via manipulation of chloroplast division genes to assess photosynthetic performance under steady-state and fluctuating light. A selection of lines was included in a field trial to explore productivity. Lines with enlarged chloroplasts underperformed in most of the measured traits. Lines with smaller and more numerous chloroplasts showed a similar efficiency compared with wild-type (WT) tobacco. Chloroplast size only weakly affected light absorptance and light profiles within the leaf. Increasing chloroplast size decreased mesophyll conductance (gm ) but decreased chloroplast size did not increase gm . Increasing chloroplast size reduced chloroplast movements and enhanced non-photochemical quenching. The chloroplast smaller than WT appeared to be no better than WT for photosynthetic efficiency and productivity under field conditions. The results indicate that chloroplast size manipulations are therefore unlikely to lead to higher photosynthetic efficiency or growth.


Asunto(s)
Cloroplastos , Fotosíntesis , Cloroplastos/metabolismo , Hojas de la Planta , Nicotiana/genética
6.
J Exp Bot ; 73(16): 5745-5757, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-35595294

RESUMEN

Water deficit currently acts as one of the largest limiting factors for agricultural productivity worldwide. Additionally, limitation by water scarcity is projected to continue in the future with the further onset of effects of global climate change. As a result, it is critical to develop or breed for crops that have increased water use efficiency and that are more capable of coping with water scarce conditions. However, increased intrinsic water use efficiency (iWUE) typically brings a trade-off with CO2 assimilation as all gas exchange is mediated by stomata, through which CO2 enters the leaf while water vapor exits. Previously, promising results were shown using guard-cell-targeted overexpression of hexokinase to increase iWUE without incurring a penalty in photosynthetic rates or biomass production. Here, two homozygous transgenic tobacco (Nicotiana tabacum) lines expressing Arabidopsis Hexokinase 1 (AtHXK1) constitutively (35SHXK2 and 35SHXK5) and a line that had guard-cell-targeted overexpression of AtHXK1 (GCHXK2) were evaluated relative to wild type for traits related to photosynthesis and yield. In this study, iWUE was significantly higher in GCHXK2 compared with wild type without negatively impacting CO2 assimilation, although results were dependent upon leaf age and proximity of precipitation event to gas exchange measurement.


Asunto(s)
Arabidopsis , Nicotiana , Arabidopsis/genética , Dióxido de Carbono , Hexoquinasa/genética , Fotosíntesis , Fitomejoramiento , Hojas de la Planta , Nicotiana/genética
7.
Glob Chang Biol ; 26(10): 5965-5978, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32677162

RESUMEN

Climate change predictions foresee a combination of rising CO2 , temperature and altered precipitation. Effects of single climatic variables are well defined, but the importance of combined variables and genotypic effects is less known, although pivotal for assessing climate change impacts, for example, with crop growth models. This study provides developmental and physiological data from combined climatic factors for two distinct wheat cultivars (Paragon and Gladius), as a basis to improve predictions for climate change scenarios. The two cultivars were grown in controlled climate chambers in a fully factorial setup of atmospheric CO2 concentration, growth temperature and watering regime. The cultivars differed considerably in their developmental rate, response pattern and the parameters responsible for most of their variation. The growth of Paragon was linked to climatic effects on photosynthesis and mainly affected by temperature. Paragon was overall more negatively affected by all treatment combinations compared to Gladius. Gladius was mostly affected by watering regime. The cultivars' acclimation strategies to climate factors varied significantly. Thus, considering a single factor is an oversimplification very likely impacting the accuracy of crop growth models. Intraspecific crop variation could help understanding genotype by environment variation. Cultivars with high phenotypic plasticity may have greater resilience against climatic variability.


Asunto(s)
Cambio Climático , Triticum , Productos Agrícolas/genética , Fotosíntesis , Temperatura , Triticum/genética
8.
Plant Physiol ; 176(2): 1247-1261, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28924017

RESUMEN

We present a new simulation model of the reactions in the photosynthetic electron transport chain of C3 species. We show that including recent insights about the regulation of the thylakoid proton motive force, ATP/NADPH balancing mechanisms (cyclic and noncyclic alternative electron transport), and regulation of Rubisco activity leads to emergent behaviors that may affect the operation and regulation of photosynthesis under different dynamic environmental conditions. The model was parameterized with experimental results in the literature, with a focus on Arabidopsis (Arabidopsis thaliana). A dataset was constructed from multiple sources, including measurements of steady-state and dynamic gas exchange, chlorophyll fluorescence, and absorbance spectroscopy under different light intensities and CO2, to test predictions of the model under different experimental conditions. Simulations suggested that there are strong interactions between cyclic and noncyclic alternative electron transport and that an excess capacity for alternative electron transport is required to ensure adequate redox state and lumen pH. Furthermore, the model predicted that, under specific conditions, reduction of ferredoxin by plastoquinol is possible after a rapid increase in light intensity. Further analysis also revealed that the relationship between ATP synthesis and proton motive force was highly regulated by the concentrations of ATP, ADP, and inorganic phosphate, and this facilitated an increase in nonphotochemical quenching and proton motive force under conditions where metabolism was limiting, such as low CO2, high light intensity, or combined high CO2 and high light intensity. The model may be used as an in silico platform for future research on the regulation of photosynthetic electron transport.


Asunto(s)
Arabidopsis/fisiología , Transporte de Electrón/fisiología , Modelos Biológicos , Plantas/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Dióxido de Carbono/metabolismo , Simulación por Computador , Ferredoxinas/metabolismo , Fluorescencia , Concentración de Iones de Hidrógeno , Luz , NADP/metabolismo , Fotosíntesis/fisiología , Plastoquinona/análogos & derivados , Plastoquinona/metabolismo
9.
J Exp Bot ; 70(9): 2449-2462, 2019 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-30785619

RESUMEN

Accurate predictions of the timing of physiological stages and the development rate are crucial for predicting crop performance under field conditions. Plant development is controlled by the leaf appearance rate (LAR) and our understanding of how LAR responds to environmental factors is still limited. Here, we tested the hypothesis that carbon availability may account for the effects of irradiance, photoperiod, atmospheric CO2 concentration, and ontogeny on LAR. We conducted three experiments in growth chambers to quantify and disentangle these effects for both winter and spring wheat cultivars. Variations of LAR observed between environmental scenarios were well explained by the supply/demand ratio for carbon, quantified using the photothermal quotient. We therefore developed an ecophysiological model based on the photothermal quotient that accounts for the effects of temperature, irradiance, photoperiod, and ontogeny on LAR. Comparisons of observed leaf stages and LAR with simulations from our model, from a linear thermal-time model, and from a segmented linear thermal-time model corrected for sowing date showed that our model can simulate the observed changes in LAR in the field with the lowest error. Our findings demonstrate that a hypothesis-driven approach that incorporates more physiology in specific processes of crop models can increase their predictive power under variable environments.


Asunto(s)
Carbono/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Triticum/crecimiento & desarrollo , Triticum/metabolismo , Modelos Biológicos , Fotoperiodo , Temperatura
10.
Plant Cell Environ ; 41(3): 589-604, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29243271

RESUMEN

A dynamic model of leaf CO2 assimilation was developed as an extension of the canonical steady-state model, by adding the effects of energy-dependent non-photochemical quenching (qE), chloroplast movement, photoinhibition, regulation of enzyme activity in the Calvin cycle, metabolite concentrations, and dynamic CO2 diffusion. The model was calibrated and tested successfully using published measurements of gas exchange and chlorophyll fluorescence on Arabidopsis thaliana ecotype Col-0 and several photosynthetic mutants and transformants affecting the regulation of Rubisco activity (rca-2 and rwt43), non-photochemical quenching (npq4-1 and npq1-2), and sucrose synthesis (spsa1). The potential improvements on CO2 assimilation under fluctuating irradiance that can be achieved by removing the kinetic limitations on the regulation of enzyme activities, electron transport, and stomatal conductance were calculated in silico for different scenarios. The model predicted that the rates of activation of enzymes in the Calvin cycle and stomatal opening were the most limiting (up to 17% improvement) and that effects varied with the frequency of fluctuations. On the other hand, relaxation of qE and chloroplast movement had a strong effect on average low-irradiance CO2 assimilation (up to 10% improvement). Strong synergies among processes were found, such that removing all kinetic limitations simultaneously resulted in improvements of up to 32%.


Asunto(s)
Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Modelos Biológicos , Hojas de la Planta/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calibración , Clorofila/metabolismo , Transporte de Electrón , Luz , Complejos de Proteína Captadores de Luz/genética , Complejos de Proteína Captadores de Luz/metabolismo , Mutación , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Estomas de Plantas/fisiología , Ribulosa-Bifosfato Carboxilasa/economía , Ribulosa-Bifosfato Carboxilasa/metabolismo
11.
J Exp Bot ; 68(13): 3473-3486, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28859373

RESUMEN

Improving photosynthesis is a major target for increasing crop yields and ensuring food security. Phenotyping of photosynthesis in the field is critical to understand the limits to crop performance in agricultural settings. Yet, detailed phenotyping of photosynthetic traits is relatively scarce in field-grown wheat, with previous studies focusing on narrow germplasm selections. Flag leaf photosynthetic traits, crop development, and yield traits were compared in 64 field-grown wheat cultivars in the UK. Pre-anthesis and post-anthesis photosynthetic traits correlated significantly and positively with grain yield and harvest index (HI). These traits included net CO2 assimilation measured at ambient CO2 concentrations and a range of photosynthetic photon flux densities, and traits associated with the light response of photosynthesis. In most cultivars, photosynthesis decreased post-anthesis compared with pre-anthesis, and this was associated with decreased Rubisco activity and abundance. Heritability of photosynthetic traits suggests that phenotypic variation can be used to inform breeding programmes. Specific cultivars were identified with traits relevant to breeding for increased crop yields in the UK: pre-anthesis photosynthesis, post-anthesis photosynthesis, light response of photosynthesis, and Rubisco amounts. The results indicate that flag leaf longevity and operating photosynthetic activity in the canopy can be further exploited to maximize grain filling in UK bread wheat.


Asunto(s)
Dióxido de Carbono/metabolismo , Fenotipo , Fotosíntesis , Ribulosa-Bifosfato Carboxilasa/metabolismo , Triticum/crecimiento & desarrollo , Triticum/genética , Grano Comestible/crecimiento & desarrollo , Inglaterra , Luz , Longevidad , Hojas de la Planta/crecimiento & desarrollo , Triticum/metabolismo
12.
J Exp Bot ; 67(9): 2699-714, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26969744

RESUMEN

A small bundle-sheath conductance (g bs) is essential for the C4 CO2-concentrating mechanism to suppress photorespiration effectively. To predict the productivity of C4 crops accurately under global warming, it is necessary to examine whether and how g bs responds to temperature. We investigated the temperature response of g bs in maize by fitting a C4 photosynthesis model to combined gas exchange and chlorophyll fluorescence measurements of irradiance and CO2 response curves at 21% and 2% O2 within the range of 13.5-39 °C. The analysis was based on reported kinetic constants of C4 Rubisco and phosphoenolpyruvate carboxylase and temperature responses of C3 mesophyll conductance (g m). The estimates of g bs varied greatly with leaf temperature. The temperature response of g bs was well described by the peaked Arrhenius equation, with the optimum temperature being ~34 °C. The assumed temperature responses of g m had only a slight impact on the temperature response of g bs In contrast, using extreme values of some enzyme kinetic constants changed the shape of the response, from the peaked optimum response to the non-peaked Arrhenius pattern. Further studies are needed to confirm such an Arrhenius response pattern from independent measurement techniques and to assess whether it is common across C4 species.


Asunto(s)
Hojas de la Planta/fisiología , Zea mays/fisiología , Dióxido de Carbono/metabolismo , Respiración de la Célula/fisiología , Fotosíntesis/fisiología , Hojas de la Planta/citología , Temperatura
13.
Methods Mol Biol ; 2790: 149-162, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38649571

RESUMEN

Oxygen is both product and substrate of photosynthesis and metabolism in plants, by oxygen evolution through water splitting and uptake by photorespiration and respiration. It is important to investigate these processes simultaneously in leaves, especially in response to environmental variables, such as light and temperature. To distinguish between processes that evolve or take up O2 in leaves in the light, in vivo gas exchange of stable isotopes of oxygen and membrane inlet mass spectrometry is used. A closed-cuvette system for gas exchange of leaf discs is described, using the stable isotopes 16O2 and 18O2, with a semi-permeable membrane gas inlet and isotope mass separation and detection by mass spectrometry. Measurement of evolution and uptake, as well as CO2 uptake, at a range of light levels allows composition of a light response curve, here described for French bean (Phaseolus vulgaris) and maize (Zea mays) leaf discs.


Asunto(s)
Espectrometría de Masas , Isótopos de Oxígeno , Oxígeno , Hojas de la Planta , Zea mays , Hojas de la Planta/metabolismo , Espectrometría de Masas/métodos , Isótopos de Oxígeno/metabolismo , Oxígeno/metabolismo , Zea mays/metabolismo , Fotosíntesis , Phaseolus/metabolismo , Dióxido de Carbono/metabolismo , Luz
14.
Methods Mol Biol ; 2792: 163-173, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38861086

RESUMEN

Photosynthesis and metabolism in plants involve oxygen as both a product and substrate. Oxygen is taken up during photorespiration and respiration and produced through water splitting during photosynthesis. To distinguish between processes that produce or consume O2 in leaves, isotope mass separation and detection by mass spectrometry allows measurement of evolution and uptake of O2 as well as CO2 uptake. This chapter describes how to calculate the rate of Rubisco oxygenation and carboxylation from in vivo gas exchange of stable isotopes of 16O2 and 18O2 with a closed cuvette system for leaf discs and membrane inlet mass spectrometry.


Asunto(s)
Espectrometría de Masas , Oxígeno , Fotosíntesis , Espectrometría de Masas/métodos , Oxígeno/metabolismo , Isótopos de Oxígeno/metabolismo , Hojas de la Planta/metabolismo , Dióxido de Carbono/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Respiración de la Célula
15.
Methods Mol Biol ; 2790: 1-26, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38649563

RESUMEN

Measurements of in vivo photosynthesis are powerful tools that probe the largest fluxes of carbon and energy in an illuminated leaf, but often the specific techniques used are so varied and specialized that it is difficult for researchers outside the field to select and perform the most useful assays for their research questions. The goal of this chapter is to provide a broad overview of the current tools available for the study of photosynthesis, both in vivo and in vitro, so as to provide a foundation for selecting appropriate techniques, many of which are presented in detail in subsequent chapters. This chapter will also organize current methods into a comparative framework and provide examples of how they have been applied to research questions of broad agronomical, ecological, or biological importance. This chapter closes with an argument that the future of in vivo measurements of photosynthesis lies in the ability to use multiple methods simultaneously and discusses the benefits of this approach to currently open physiological questions. This chapter, combined with the relevant methods chapters, could serve as a laboratory course in methods in photosynthesis research or as part of a more comprehensive laboratory course in general plant physiology methods.


Asunto(s)
Fotosíntesis , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Plantas/metabolismo , Clorofila/metabolismo , Dióxido de Carbono/metabolismo , Dióxido de Carbono/análisis
16.
J Exp Bot ; 64(13): 3925-35, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23585671

RESUMEN

Sustainably feeding the world's growing population in future is a great challenge and can be achieved only by increasing yield per unit land surface. Efficiency of light interception and biomass partitioning into harvestable parts (harvest index) has been improved substantially via plant breeding in modern crops. The conversion efficiency of intercepted light into biomass still holds promise for yield increase. This conversion efficiency is to a great extent constrained by the metabolic capacity of photosynthesis, defined by the characteristics of its components. Genetic manipulations are increasingly applied to lift these constraints, by improving CO2 or substrate availability for the photosynthetic carbon reduction cycle. Although these manipulations can lead to improved potential growth rates, this increase might be offset by a decrease in performance under stress conditions. In this review, we assess possible positive or negative effects of the introduction of a CO2-concentrating mechanism in C3 crop species on crop potential productivity and yield robustness.


Asunto(s)
Dióxido de Carbono/metabolismo , Nitrógeno/metabolismo , Fotosíntesis/genética , Plantas/genética , Biomasa , Cruzamiento , Respiración de la Célula , Productos Agrícolas , Luz , Oxidación-Reducción , Desarrollo de la Planta , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Plantas/metabolismo , Plantas/efectos de la radiación , Transducción de Señal
17.
Ann Bot ; 111(1): 31-46, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23186836

RESUMEN

BACKGROUND: Carbon assimilation and leaf-to-fruit sugar transport are, along with plant water status, the driving mechanisms for fruit growth. An integrated comprehension of the plant water and carbon relationships is therefore essential to better understand water and dry matter accumulation. Variations in stem diameter result from an integrated response to plant water and carbon status and are as such a valuable source of information. METHODS: A mechanistic water flow and storage model was used to relate variations in stem diameter to phloem sugar loading and sugar concentration dynamics in tomato. The simulation results were compared with an independent model, simulating phloem sucrose loading at the leaf level based on photosynthesis and sugar metabolism kinetics and enabled a mechanistic interpretation of the 'one common assimilate pool' concept for tomato. KEY RESULTS: Combining stem diameter variation measurements and mechanistic modelling allowed us to distinguish instantaneous dynamics in the plant water relations and gradual variations in plant carbon status. Additionally, the model combined with stem diameter measurements enabled prediction of dynamic variables which are difficult to measure in a continuous and non-destructive way, such as xylem water potential and phloem hydrostatic potential. Finally, dynamics in phloem sugar loading and sugar concentration were distilled from stem diameter variations. CONCLUSIONS: Stem diameter variations, when used in mechanistic models, have great potential to continuously monitor and interpret plant water and carbon relations under natural growing conditions.


Asunto(s)
Carbono/farmacología , Tallos de la Planta/anatomía & histología , Tallos de la Planta/efectos de los fármacos , Solanum lycopersicum/anatomía & histología , Solanum lycopersicum/efectos de los fármacos , Técnicas Biosensibles , Simulación por Computador , Modelos Biológicos , Fotosíntesis/efectos de los fármacos , Exudados de Plantas/metabolismo , Reología/efectos de los fármacos , Sacarosa/farmacología , Temperatura , Presión de Vapor
18.
Plant Sci ; 329: 111626, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36738936

RESUMEN

Plant breeding for increased crop water use efficiency or drought stress resistance requires methods to quickly assess the transpiration rate (E) and stomatal conductance (gs) of a large number of individual plants. Several methods to measure E and gs exist, each of which has its own advantages and shortcomings. To add to this toolbox, we developed a method that uses whole-plant thermal imaging in a controlled environment, where aerial humidity is changed rapidly to induce changes in E that are reflected in changes in leaf temperature. This approach is based on a simplified energy balance equation, without the need for a reference material or complicated calculations. To test this concept, we built a double-sided, perforated, open-top plexiglass chamber that was supplied with air at a high flow rate (35 L min-1) and whose relative humidity (RH) could be switched rapidly. Measurements included air and leaf temperature as well as RH. Using several well-watered and drought stressed genotypes of Arabidopsis thaliana that were exposed to multiple cycles in RH (30-50 % and back), we showed that leaf temperature as measured in our system correlated well with E and gs measured in a commercial gas exchange system. Our results demonstrate that, at least within a given species, the differences in leaf temperature under several RH can be used as a proxy for E and gs. Given that this method is fairly quick, noninvasive and remote, we envision that it could be upscaled for work within rapid plant phenotyping systems.


Asunto(s)
Arabidopsis , Estomas de Plantas , Estomas de Plantas/fisiología , Sequías , Transpiración de Plantas/fisiología , Fitomejoramiento , Hojas de la Planta/fisiología , Plantas , Agua/fisiología , Arabidopsis/fisiología
19.
Front Plant Sci ; 14: 1070218, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36968375

RESUMEN

In nature, light is never constant, while in the controlled environments used for vertical farming, in vitro propagation, or plant production for scientific research, light intensity is often kept constant during the photoperiod. To investigate the effects on plant growth of varying irradiance during the photoperiod, we grew Arabidopsis thaliana under three irradiance profiles: a square-wave profile, a parabolic profile with gradually increasing and subsequently decreasing irradiance, and a regime comprised of rapid fluctuations in irradiance. The daily integral of irradiance was the same for all three treatments. Leaf area, plant growth rate, and biomass at time of harvest were compared. Plants grown under the parabolic profile had the highest growth rate and biomass. This could be explained by a higher average light-use efficiency for carbon dioxide fixation. Furthermore, we compared the growth of wild type plants with that of the PsbS-deficient mutant npq4. PsbS triggers the fast non-photochemical quenching process (qE) that protects PSII from photodamage during sudden increases in irradiance. Based mainly on field and greenhouse experiments, the current consensus is that npq4 mutants grow more slowly in fluctuating light. However, our data show that this is not the case for several forms of fluctuating light conditions under otherwise identical controlled-climate room conditions.

20.
Physiol Plant ; 146(4): 439-47, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22540231

RESUMEN

Relative changes in cell turgor of leaves of well-watered tomato plants were evaluated using the leaf patch clamp pressure probe (LPCP) under dynamic greenhouse climate conditions. LPCP changes, a measure for relative changes in cell turgor, were monitored at three different heights of transpiring and non-transpiring leaves of tomato plants on sunny and cloudy days simultaneously with whole plant water uptake. Clear diel patterns were observed for relative changes of cell turgor of both transpiring and non-transpiring leaves, which were stronger on sunny days than on cloudy days. A clear effect of canopy height was also observed. Non-transpiring leaves showed relative changes in cell turgor that closely followed plant water uptake throughout the day. However, in the afternoon the relative changes of cell turgor of the transpiring leaves displayed a delayed response in comparison to plant water uptake. Subsequent recovery of cell turgor loss of transpiring leaves during the following night appeared insufficient, as the pre-dawn turgescent state similar to the previous night was not attained.


Asunto(s)
Técnicas de Placa-Clamp/métodos , Células Vegetales/fisiología , Hojas de la Planta/fisiología , Solanum lycopersicum/fisiología , Transporte Biológico , Fenómenos Biomecánicos , Solanum lycopersicum/efectos de la radiación , Técnicas de Placa-Clamp/instrumentación , Hojas de la Planta/efectos de la radiación , Transpiración de Plantas , Presión , Luz Solar , Temperatura , Agua/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA