Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 24(26): 8151-8161, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38912914

RESUMEN

The size of liposomal drugs has been demonstrated to strongly correlate with their pharmacokinetics and pharmacodynamics. While the microfluidic method successfully achieves the production of liposomes with well-controlled sizes across various buffer/lipid flow rate ratio (FRR) settings, any adjustments to the FRR inevitably influence the concentration, encapsulation efficiency (EE), and stability of liposomal drugs. Here we describe a controllable cavitation-on-a-chip (CCC) strategy that facilitates the precise regulation of liposomal drug size at any desired FRR. The CCC-enabled size-specific liposomes exhibited striking differences in uptake and biodistribution behaviors, thereby demonstrating distinct antitumor efficacy in both tumor-bearing animal and melanoma patient-derived organoid (PDO) models. Intriguingly, as the liposome size decreased to approximately 80 nm, the preferential accumulation of liposomal drugs in the liver transitioned to a predominant enrichment in the kidneys. These findings underscore the considerable potential of our CCC approach in influencing the pharmacokinetics and pharmacodynamics of liposomal nanomedicines.


Asunto(s)
Dispositivos Laboratorio en un Chip , Liposomas , Liposomas/química , Animales , Humanos , Ratones , Distribución Tisular , Tamaño de la Partícula , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/administración & dosificación , Línea Celular Tumoral , Melanoma/tratamiento farmacológico , Melanoma/patología
2.
Eur J Immunol ; 53(4): e2250100, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36648433

RESUMEN

Autoimmune hepatitis (AIH) eventually progresses to liver fibrosis, cirrhosis, and even hepatocellular carcinoma, causing irreversible damage to the liver. Concanavalin A-induced hepatitis in mice is a well-established model with pathophysiology similar to that of immune-mediated liver injury in human viral and autoimmune hepatitis, and it has been widely used to explore the pathogenesis and clinical treatment of human immune hepatitis. Artemisinin has been shown to exhibit anti-inflammatory effects through unclear mechanisms. In this study, we aimed to assess the effect of the artemisinin derivative TPN10466 on AIH. In vitro studies showed that TPN10466 dose dependently inhibited the percentage of IFN-γ-producing T cells. Further studies showed that TPN10466 attenuated the disease severity of AIH by downregulating the ability of lymphocytes to secrete IFN-γ and by reducing lymphocyte number in the liver. In addition, we found that TPN10466 treatment reduced T-cell responses by inhibiting JNK, ERK, and p38 pathways. In conclusion, our work suggests that TPN10466 provides protection against the autoimmune disease AIH by suppressing the inflammatory response of T cells, suggesting that TPN10466 may be a promising potential agent for the treatment of AIH.


Asunto(s)
Artemisininas , Hepatitis Autoinmune , Animales , Humanos , Ratones , Artemisininas/metabolismo , Artemisininas/farmacología , Artemisininas/uso terapéutico , Concanavalina A/metabolismo , Concanavalina A/farmacología , Concanavalina A/uso terapéutico , Hepatitis Autoinmune/tratamiento farmacológico , Hígado/patología , Sistema de Señalización de MAP Quinasas
3.
J Immunol ; 208(7): 1545-1553, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35277421

RESUMEN

Multiple sclerosis (MS) is a chronic inflammatory demyelinating autoimmune disease with chronic inflammatory demyelination of the CNS. Experimental autoimmune encephalomyelitis (EAE) is an important animal model to study MS, with many pathological phenomena similar to MS. Th17 cells are important regulators of EAE and MS pathogenesis. Most cytokines needed for Th cell development are secreted by APCs, such as dendritic cells (DCs). Consequently, MS could be improved by inhibiting cytokine secretion from DCs. In this study, we reported that chlorzoxazone could ameliorate EAE pathogenesis via inhibiting IL-6 production by DCs. The EAE signs in the chlorzoxazone-treated group of mice were relieved, which was mainly manifested as lower clinical scores, a decrease in the number of immune cells, and a reduction of demyelination in the CNS. Moreover, the proportion of Th17 cells in the spleen and CNS decreased significantly. In vitro experiments showed that chlorzoxazone treatment significantly reduced DC-derived IL-6 production. In the DC-T cell coculture experiment, significantly decreased Th17 differentiation was observed after chlorzoxazone treatment. In addition, mass spectrometric analysis was performed to elucidate the mechanism by which chlorzoxazone affected EAE and DC function. We showed that the effect of chlorzoxazone on inhibiting the secretion of IL-6 by DCs may be mediated via the AMP-activated protein kinase pathway. Overall, our study elucidated the key role of chlorzoxazone in regulating EAE pathogenesis and suggested that it might be used as a new drug for MS patients.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Animales , Clorzoxazona/metabolismo , Clorzoxazona/farmacología , Células Dendríticas , Humanos , Interleucina-6/metabolismo , Ratones , Ratones Endogámicos C57BL , Células Th17
4.
Angew Chem Int Ed Engl ; 63(9): e202317876, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38193266

RESUMEN

Constructing uniform covalent organic framework (COF) film on substrates for electronic devices is highly desirable. Here, a simple and mild strategy is developed to prepare them by polymerization on a solid-liquid interface. The universality of the method is confirmed by the successful preparation of five COF films with different microstructures. These films have large lateral size, controllable thickness, and high crystalline quality. And COF patterns can also be directly achieved on substrates via hydrophilic and hydrophobic interface engineering, which is in favor of preparing device array. For application studies, the PyTTA-TPA (PyTTA: 4,4',4'',4'''-(1,3,6,8-Tetrakis(4-aminophenyl)pyrene and TPA: terephthalaldehyde) COF film has a high photoresponsivity of 59.79 µA W-1 at 420 nm for photoelectrochemical (PEC) detection. When employed as an active material for optoelectronic synaptic devices for the first attempt, it shows excellent light-stimulated synaptic plasticity properties such as short-term plasticity (STP), long-term plasticity (LTP), and the conversion of STP to LTP, which can be used to simulate biological synaptic functions.

5.
J Am Chem Soc ; 145(49): 26900-26907, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38010167

RESUMEN

The manipulation of topological architectures in two-dimensional (2D) covalent organic framework (COF) materials for different applications is promising but remains a great challenge. Here, we first report the topology-selective synthesis of two distinct varieties of 2DCOFs, imine-based HT-COFs and benzimidazole-fused BI-HT-COFs, by simply altering acid catalysts. To HT-COFs, a superlattice of 1D channel with a persistent triangular shape is formed via Schiff base reaction, while to BI-HT-COFs, a hexagonal lattice structure with a highly conjugated structure and imidazole linkages is constructed due to an imine-based cyclization reaction. The two COFs exhibited marked differences in their bandgap, chemical stability, molecular adsorption, and catalytic activity, which make them have different fields of application. This work not only diversifies the hexaaminotriphenylene-based 2DCOF topologies but also provides vivid examples of structure-property relationships, which would facilitate fundamental research and potential applications of 2DCOFs.

6.
Cell Immunol ; 373: 104500, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35276582

RESUMEN

Multiple sclerosis (MS) was one of the major conditions causing neurological dysfunction and was an incurable progressive central nervous system disease. Experimental autoimmune encephalomyelitis (EAE) was the most commonly used experimental model of MS. Artemisinin have been shown to exhibit anti-inflammatory effects through unclear mechanisms. In this study, we aimed to evaluate the effect of administration of the artemisinin derivative TPN10466 in EAE. TPN10466 alleviated the severity of disease in EAE. Further studies showed that TPN10466 inhibited lymphocyte migration by downregulating chemokine expression and adhesion molecules. In addition, studies showed that TPN10466 directly inhibited Th1 and Th17 differentiation and reduced Th1 and Th17 infiltration into the central nervous system. In conclusion, our work demonstrated that TPN10466 provided protection against the autoimmune disease EAE by inhibiting the migration of immune cells and suppressing Th1/Th17 differentiation, suggesting that TPN10466 could be a potential for promising potential agent for the treatment of MS/EAE.


Asunto(s)
Artemisininas , Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Artemisininas/metabolismo , Artemisininas/farmacología , Artemisininas/uso terapéutico , Diferenciación Celular , Movimiento Celular , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/metabolismo , Índice de Severidad de la Enfermedad , Células TH1 , Células Th17
7.
Bioorg Med Chem Lett ; 64: 128682, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35304225

RESUMEN

In this paper, a series of artemisinin derivatives were synthesized and evaluated. Studies have shown that IFN-γ produced by Th1 CD4+ T cells and IL-17A secreted by Th17 CD4+ T cells played critical roles in the treatment of multiple sclerosis. We used different concentrations of artemisinin derivatives to inhibit Th1 / Th17 differentiation in naive CD4+ T cells and to characterize IFN-γ / IL-17A in in vitro experiments. The preliminary screening results showed that ester compound 5 exhibited obvious inhibitory activities on Th1 and Th17 (IFN-γ decreased from 41% to 3% and IL-17A decreased from 24% to 8% at the concentration of 10 nM to 10 µM), and carbamate compounds also had obvious inhibitory activities against Th17 at high concentration. Moreover, we investigated the effect of compound 5 on myelin oligodendrocyte glycoprotein (MOG)-induced mice experimental autoimmune encephalomyelitis (EAE) model in vivo. 100 mg/kg compound 5 effectively reduced the disease severity of EAE compared with the vehicle group. This research revealed that compound 5 could be a promising avenue as potential MS inhibitor.


Asunto(s)
Artemisininas , Encefalomielitis Autoinmune Experimental , Animales , Artemisininas/farmacología , Citocinas , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Células TH1 , Células Th17
8.
Bull Environ Contam Toxicol ; 110(1): 10, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36512068

RESUMEN

The nano-zero valence iron (nZVI) via green synthesis for heavy metal remediation has attracted many attentions due to its low-cost, environmental-safety, relative reproductivity, and high stability. However, influence of synthesis conditions on the physiochemical properties of nZVI via green tea extracts and the responding suspensibility, which is required for high reactivity, has not been fully elucidated. In this study, we investigated the zeta potentials, sedimentation and lead (Pb2+) removal capacity of various nZVIs synthesized using green tea extracts. The results showed that the tea extracts extracted at 80oC presented an excellent activity, which contributed to the outstanding suspensibility and reaction activity of nZVI synthesized in a volume ratio of 1:1 (tea extraction versus Fe2+ solution). Thus, the optimized nZVI was successfully prepared with a Pb2+ removal capacity (377.3 mg/g), which was seven times stronger than 50.31 mg/g of traditional chemical synthesized nZVI.


Asunto(s)
Restauración y Remediación Ambiental , Contaminantes Químicos del Agua , Hierro/química , Té/química , Plomo , Contaminantes Químicos del Agua/análisis , Adsorción
9.
Angew Chem Int Ed Engl ; 61(2): e202113067, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34699115

RESUMEN

Facile synthesis and post-processing of covalent organic frameworks (COFs) under mild synthetic conditions are highly sought after and important for widespread utilizations in catalysis and energy storage. Here we report the synthesis of the chemically stable aza-fused COFs BPT-COF and PT-COF by a liquid-phase method. The process involves the spontaneous polycondensation of vicinal diamines and vicinal diketones, and is driven by the near-equilibrium growth of COF domains at a very low monomer concentration. The method permits in situ assembly of COFs and COF-GO hybrid materials and leads to the formation of a uniform conducting film on arbitrary substrates on vacuum filtration. When used as electrocatalysts, the as-prepared membranes show a fast hydrogen evolution reaction (HER) with a low overpotential (45 mV at 10 mA cm-2 ) and a small Tafel slope (53 mV dec-1 ), which are the best among metal-free catalysts. Our results may open a new route towards the preparation of highly π-conjugated COFs for multifunctional applications.

10.
Nat Immunol ; 10(12): 1252-9, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19838199

RESUMEN

Interleukin 17 (IL-17)-producing T helper cells (T(H)-17 cells) are increasingly recognized as key participants in various autoimmune diseases, including multiple sclerosis. Although sets of transcription factors and cytokines are known to regulate T(H)-17 differentiation, the role of noncoding RNA is poorly understood. Here we identify a T(H)-17 cell-associated microRNA, miR-326, whose expression was highly correlated with disease severity in patients with multiple sclerosis and mice with experimental autoimmune encephalomyelitis (EAE). In vivo silencing of miR-326 resulted in fewer T(H)-17 cells and mild EAE, and its overexpression led to more T(H)-17 cells and severe EAE. We also found that miR-326 promoted T(H)-17 differentiation by targeting Ets-1, a negative regulator of T(H)-17 differentiation. Our data show a critical role for microRNA in T(H)-17 differentiation and the pathogenesis of multiple sclerosis.


Asunto(s)
Diferenciación Celular , MicroARNs/genética , Esclerosis Múltiple/genética , Esclerosis Múltiple/inmunología , Linfocitos T Colaboradores-Inductores/citología , Linfocitos T Colaboradores-Inductores/inmunología , Adulto , Animales , Secuencia de Bases , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Femenino , Humanos , Interleucina-17/inmunología , Masculino , Ratones , Esclerosis Múltiple/patología , Proteína Proto-Oncogénica c-ets-1/genética , Proteína Proto-Oncogénica c-ets-1/metabolismo , Linfocitos T Colaboradores-Inductores/metabolismo , Regulación hacia Arriba
11.
J Immunol ; 202(2): 407-420, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30541881

RESUMEN

Altered migration and immune responses of dendritic cells (DCs) lead to inflammatory and autoimmune diseases. Our studies demonstrated that ß-arrestin 2 deficiency promoted migration and cytokine production of mouse bone marrow-derived DCs. We further found that ß-arrestin 2 directly interacted with Zbtb46, a DC-specific transcription factor. What's more, our results suggested that the interaction between ß-arrestin 2 and Zbtb46 might negatively regulate DC migration. Using RNA sequencing, we indicated that genes CD74, NR4A1, and ZFP36 might be the target genes regulated by the interaction between ß-arrestin 2 and Zbtb46. Mice with selective deficiency of ß-arrestin 2 in DCs developed severer experimental autoimmune encephalomyelitis with more DC infiltration in the CNS and increased IL-6 in serum. In the systemic lupus erythematosus mice model, Arrb2fl/fl Itgax-cre+ mice were prone to exacerbation of lupus nephritis with a higher level of IL-6 and DC accumulation. Taken together, our study identified ß-arrestin 2 as a new regulator of DC migration and immune properties, providing new insights into the mechanisms underlying the development of autoimmune disease.


Asunto(s)
Células Dendríticas/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Factores de Transcripción/metabolismo , Arrestina beta 2/metabolismo , Animales , Antígenos de Diferenciación de Linfocitos B/genética , Diferenciación Celular , Movimiento Celular/genética , Células Cultivadas , Citocinas/metabolismo , Encefalomielitis Autoinmune Experimental/genética , Regulación de la Expresión Génica , Antígenos de Histocompatibilidad Clase II/genética , Interleucina-6/sangre , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Unión Proteica , Análisis de Secuencia de ARN , Tristetraprolina/genética , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , Arrestina beta 2/genética
12.
Angew Chem Int Ed Engl ; 60(32): 17440-17445, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34081388

RESUMEN

2D metal-organic framework (MOF) film as the active layer show promising application prospects in various fields including sensors, catalysis, and electronic devices. However, exploring the application of 2D MOF film in the field of artificial synapses has not been implemented yet. In this work, we fabricated a novel 2D MOF film (Cu-THPP, THPP=5,10,15,20-Tetrakis(4-hydroxyphenyl)-21H,23H-porphine), and further used it as an active layer to explore the application in the simulation of human brain synapses. It shows excellent light-stimulated synaptic plasticity properties, and exhibits the foundation function of synapses such as long-term plasticity (LTP), short-term plasticity (STP), and the conversion of STP to LTP. Most critically, the MOF based artificial synaptic device exhibits an excellent stability in atmosphere. This work opens the door for the application of 2D MOF film in the simulation of human brain synapses.


Asunto(s)
Materiales Biomiméticos/química , Membranas Artificiales , Estructuras Metalorgánicas/química , Materiales Biomiméticos/efectos de la radiación , Biomimética/métodos , Cobre/química , Cobre/efectos de la radiación , Luz , Estructuras Metalorgánicas/efectos de la radiación , Plasticidad Neuronal , Porfirinas/química , Porfirinas/efectos de la radiación , Sinapsis/química
13.
J Immunol ; 200(4): 1316-1324, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29330324

RESUMEN

IL-17-secreting T cells (Th17 cells) play a pathogenic role in multiple autoimmune diseases, including multiple sclerosis (MS), and dendritic cell (DC)-derived cytokines play pivotal roles in promoting the differentiation of naive CD4+ T cells into Th cell subsets (Th1 and Th17). Therefore, small molecules blocking the key cytokines produced by DCs will be beneficial in MS. In this article, we report that betaine treatment ameliorates MS pathogenesis by inhibiting DC-derived IL-6 production and Th17 differentiation. Using experimental autoimmune encephalomyelitis, a widely used mouse model of MS, we found that, compared with the vehicle-treated group, betaine-treated mice exhibited less severe experimental autoimmune encephalomyelitis symptoms, including lower clinical scores, reduced leukocyte infiltration, and less extensive demyelination in the CNS. Moreover, a significantly lower percentage of Th17 cells, one of the major pathogenic effector cells in MS progression, was observed in the peripheral immune system and in the CNS. Interestingly, in the in vitro Th17-differentiation assay, no significant change in Th17 cells was observed between the vehicle- and betaine-treated groups, whereas in the in vitro DC culture experiment, betaine treatment significantly decreased DC-derived IL-6 production. In the DC-T cell coculture experiment, a significantly decreased Th17 differentiation was observed upon betaine treatment. All of these data demonstrated that betaine inhibited Th17 differentiation indirectly by reducing IL-6 production by DCs. In brief, our findings demonstrated the pivotal roles of betaine in modulating MS pathogenesis and suggested that it may serve as a potential novel drug candidate for the treatment of MS.


Asunto(s)
Betaína/farmacología , Células Dendríticas/efectos de los fármacos , Encefalomielitis Autoinmune Experimental/inmunología , Interleucina-6/biosíntesis , Células Th17/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/inmunología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Factores Inmunológicos/inmunología , Interleucina-6/inmunología , Ratones , Ratones Endogámicos C57BL , Células Th17/inmunología
14.
J Immunol ; 199(1): 72-81, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28515278

RESUMEN

Adenosine 5'-diphosphate is a key endogenous cell-signaling molecule that can activate P2 purinergic receptor family members. ADP-P2Y signaling is reported to be associated with inflammation, but its function in T cell differentiation and autoimmune diseases pathogenesis is unclear. In this study, we found that the P2Y12 receptor was upregulated in the peripheral immune tissues of experimental autoimmune encephalomyelitis (EAE) mice. Deficiency of P2Y12 led to a reduced peak severity and cumulative disease score in EAE mice, followed by a dramatic reduction of leukocyte infiltration and less extensive demyelination. The percentage of Th17, one of the main pathogenic T cells in EAE, was sharply decreased in P2Y12 knockout mice, accompanied by decreased IL-17A production and a low mRNA level of Th17-related genes. In vitro culture assay further verified that P2Y12 directly regulated Th17 differentiation. More interestingly, clopidogrel and ticagrelor, two P2Y12-specific antagonists, effectively alleviated the disease severity of EAE and inhibited Th17 differentiation both in vivo and in vitro. Further study demonstrated that blocking the P2Y12 receptor also ameliorated the symptoms of 2,4,6-trinitrobenzenesulfonic acid-induced colitis and multiple low-dose streptozocin-induced type 1 diabetes. Our findings not only revealed the critical role of P2Y12 in Th17 differentiation and EAE pathogenesis, but also suggested the promising potential of P2Y12 antagonists in the treatment of autoimmune diseases.


Asunto(s)
Diferenciación Celular/inmunología , Encefalomielitis Autoinmune Experimental/fisiopatología , Receptores Purinérgicos P2Y12/inmunología , Células Th17/fisiología , Adenosina/administración & dosificación , Adenosina/análogos & derivados , Animales , Enfermedades Autoinmunes/tratamiento farmacológico , Enfermedades Autoinmunes/inmunología , Células Cultivadas , Clopidogrel , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/inmunología , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/inmunología , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/inmunología , Regulación de la Expresión Génica , Interleucina-17/biosíntesis , Interleucina-17/genética , Interleucina-17/inmunología , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Antagonistas del Receptor Purinérgico P2Y/administración & dosificación , Receptores Purinérgicos P2Y12/deficiencia , Receptores Purinérgicos P2Y12/genética , Receptores Purinérgicos P2Y12/metabolismo , Transducción de Señal , Células Th17/inmunología , Ticagrelor , Ticlopidina/administración & dosificación , Ticlopidina/análogos & derivados , Ácido Trinitrobencenosulfónico/administración & dosificación
15.
Mol Pharmacol ; 91(5): 464-474, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28213589

RESUMEN

CD4+ T helper cells, especially T helper 17 (TH17) cells, combined with immune regulatory network dysfunction, play key roles in autoimmune diseases including multiple sclerosis (MS). Betulinic acid (BA), a natural pentacyclic triterpenoid, has been reported to be involved in anti-inflammation, in particular having an inhibitory effect on proinflammatory cytokine interleukin 17 (IL-17) and interferon-γ (IFN-γ) production. In this study, we screened BA derivatives and found a BA derivative, SH479, that had a greater inhibitory effect on TH17 differentiation. Our further analysis showed that SH479 had a greater inhibitory effect on TH17 and TH1, and a more stimulatory effect on regulatory T (Treg) cells. To evaluate the effects of SH479 on autoimmune diseases in vivo, we employed the extensively used MS mouse model experimental autoimmune encephalomyelitis (EAE). Our results showed that SH479 ameliorated clinical and histologic signs of EAE in both prevention and therapeutic protocols by regulating the TH17/Treg balance. SH479 dose-dependently reduced splenic lymphocyte proinflammatory factors and increased anti-inflammatory factors. Moreover, SH479 specifically inhibited splenic lymphocyte viability from EAE mice but not normal splenic lymphocyte viability. At the molecular level, SH479 inhibited TH17 differentiation by regulating signal transducer and activator of transcription-3 (STAT3) phosphorylation, DNA binding activity, and recruitment to the Il-17a promoter in CD4+ T cells. Furthermore, SH479 promoted the STAT5 signaling pathway and inhibited the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway. Together, our data demonstrated that SH479 ameliorated EAE by regulating the TH17/Treg balance through inhibiting the STAT3 and NF-κB pathways while activating the STAT5 pathway, suggesting that SH479 is a potential novel drug candidate for autoimmune diseases including MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/inmunología , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Triterpenos/uso terapéutico , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Encefalomielitis Autoinmune Experimental/patología , Humanos , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Triterpenos Pentacíclicos , Factores de Transcripción STAT/metabolismo , Transducción de Señal/efectos de los fármacos , Bazo/efectos de los fármacos , Bazo/patología , Linfocitos T Reguladores/efectos de los fármacos , Células Th17/efectos de los fármacos , Triterpenos/química , Triterpenos/farmacocinética , Triterpenos/farmacología , Ácido Betulínico
16.
J Craniofac Surg ; 27(2): e211-5, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26872275

RESUMEN

The Torcular Herophili region of the brain is anatomically complex, and surgery in this area requires much skill and care. Retrospective analysis on 35 cases of meningiomas in the Torcular Herophili region treated by microsurgery and confirmed by pathology. Tumor resection range was evaluated using the Simpson grading criteria. Postoperative complications and tumor recurrence were evaluated. Patients were followed up. The Karnofsky performance status was used to evaluate neurologic functions. Magnetic resonance venography (MRV) and magnetic resonance imaging (MRI) revealed the extent of disease in all patients. Simpson level I excision was done in 27 patients, level II in 5 patients, and level IV in 3 patients. Gamma knife treatment after surgery was performed in 3 patients. Symptoms of increased intracranial pressure were relieved after surgery. No patient died, and no patient suffered from any relevant operative complications and disabilities. Pathology reported typical meningioma (World Health Organization [WHO] level I) in 32 patients, and atypical meningioma (WHO level II) in 3 patients. Thirty-two patients were followed up for 0.5 to 5 years: 1 patient relapsed 2 years after operation (Simpson level IV excision), and 2 patients relapsed 3 years after operation (one Simpson level I and one level II). These results indicated that MRV should be performed to confirm the exact relationship between the tumor and venous sinus. The operative approach should be planned according to the MRI results, and the venous sinus should be preserved. Gamma knife might be a beneficial auxiliary treatment of meningioma in the Torcular Herophili region.


Asunto(s)
Senos Craneales/cirugía , Neoplasias Meníngeas/cirugía , Meningioma/cirugía , Microcirugia/métodos , Procedimientos Neuroquirúrgicos/métodos , Adulto , Anciano , Senos Craneales/diagnóstico por imagen , Senos Craneales/patología , Femenino , Estudios de Seguimiento , Humanos , Angiografía por Resonancia Magnética , Imagen por Resonancia Magnética , Masculino , Neoplasias Meníngeas/diagnóstico por imagen , Neoplasias Meníngeas/patología , Meningioma/diagnóstico por imagen , Meningioma/patología , Persona de Mediana Edad , Estudios Retrospectivos , Resultado del Tratamiento
17.
J Immunol ; 190(1): 138-46, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23225885

RESUMEN

Adenosine is a key endogenous signaling molecule that regulates immune responses. A(2B) adenosine receptor (AR) is a relatively low-affinity receptor for adenosine, and the activation of A(2B)AR is believed to require pathological level of adenosine that is associated with ischemia, inflammation, trauma, or other types of stress. The role of A(2B)AR in the pathogenesis of multiple sclerosis (MS) is still unclear. In this study, we discovered that A(2B)AR was upregulated both in the peripheral blood leukocytes of MS patients and the peripheral lymphoid tissues of experimental autoimmune encephalomyelitis (EAE) mice. A(2B)AR-specific antagonists, CVT-6883 and MRS-1754, alleviated the clinical symptoms of EAE and protected the CNS from immune damage. A(2B)AR-knockout mice also developed less severe EAE. Further study indicated that blocking or deleting A(2B)AR inhibited Th17 cell differentiation by blocking IL-6 production from APCs such as dendritic cells. In dendritic cells, A(2B)AR was also upregulated during the development of EAE. CVT-6883 and genetic deletion of A(2B)AR significantly reduced adenosine-mediated IL-6 production. The phospholipase Cß-protein kinase C and p38 MAPK pathways were found to be involved in the A(2B)AR-mediated IL-6 production. Our findings not only revealed the pathological role of A(2B)AR in EAE, but also suggested that this receptor might be a new therapeutic target for the development of anti-MS drugs.


Asunto(s)
Diferenciación Celular/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Interleucina-6/antagonistas & inhibidores , Receptor de Adenosina A2B/metabolismo , Células Th17/inmunología , Adulto , Animales , Células Cultivadas , Técnicas de Cocultivo , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/prevención & control , Femenino , Inhibidores de Crecimiento/antagonistas & inhibidores , Inhibidores de Crecimiento/fisiología , Humanos , Interleucina-6/biosíntesis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Receptor de Adenosina A2B/deficiencia , Células Th17/metabolismo , Células Th17/patología , Regulación hacia Arriba/inmunología
18.
Inflammation ; 47(1): 333-345, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37805951

RESUMEN

There is a potential association between the dysregulation of trace elements and impaired liver function. Elevated levels of manganese, an essential metal ion, have been observed in liver-related diseases, and excessive intake of manganese can worsen liver damage. However, the specific mechanisms underlying manganese-induced liver injury are not well understood. The aim of our study was to investigate the effects of excess manganese on autoimmune hepatitis (AIH) and elucidate its mechanisms. Our findings revealed that manganese exacerbates liver damage under ConA-induced inflammatory conditions. Transcriptomic and experimental data suggested that manganese enhances inflammatory signaling and contributes to the inflammatory microenvironment in the liver of AIH mice. Further investigations demonstrated that manganese exacerbates liver injury by activating the cGAS-STING signaling pathway and its downstream pro-inflammatory factors such as IFN[Formula: see text], IFN[Formula: see text], TNF[Formula: see text], and IL-6 in the liver of AIH mice. These results suggest that manganese overload promotes the progression of AIH by activating cGAS-STING-mediated inflammation, providing a new perspective for the treatment and prognosis of AIH.


Asunto(s)
Hepatitis Autoinmune , Manganeso , Ratones , Animales , Manganeso/toxicidad , Nucleotidiltransferasas/metabolismo , Transducción de Señal , Inflamación/inducido químicamente
19.
J Neuroimmune Pharmacol ; 19(1): 6, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38411708

RESUMEN

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) mediated by immune cells, in which auto-reactive CD4+ T cells have been implicated as a major driver in the pathogenesis of the disease. In this study, we aimed to investigate whether the artemisinin derivative TPN10475 could alleviate experimental autoimmune encephalomyelitis (EAE), a commonly used animal model of MS and its possible mechanisms. TPN10475 effectively resisted the reduction of TGF-ß signal transduction induced by TCR stimulation, suppressed the activation and function of effector CD4+ T cells in vitro, and restricted the differentiation of pathogenic Th1 and Th17 cells. It was also found to negatively regulate the inflammatory response in EAE by reducing the peripheral activation drive of auto-reactive helper T lymphocytes, inhibiting the migration of inflammatory cells into the CNS to attenuate EAE. The above results suggested that the upregulation of TGF-ß signal transduction may provide new ideas for the study of MS pathogenesis and have positive implications for the development of drugs for the treatment of autoimmune diseases.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Esclerosis Múltiple/tratamiento farmacológico , Células Th17 , Transducción de Señal , Factor de Crecimiento Transformador beta
20.
J Hematol Oncol ; 17(1): 11, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491392

RESUMEN

Immunotherapy is the first-line therapy for esophageal squamous cell carcinoma (ESCC), yet many patients do not respond due to drug resistance and the lack of reliable predictive markers. We collected 73 ESCC patients (including discovery cohort and validation cohort) without immune thrombocytopenia and undergoing anti-PD1 immunotherapy. Proteomic and phosphoproteomic analysis of 73 ESCC treatment-naive samples by mass spectrometry-based label-free quantification were applied to explore the potential resistant and sensitive mechanisms, and identify predictive markers of ESCC immunotherapy. Comparative analysis found the pathways related to immune and mitochondrial functions were associated with ESCC immunotherapy sensitivity; while platelet activation bioprocess showed negative correlation with CD8+ T cells and related to ESCC immunotherapy non-sensitivity. Finally, we identified 10 ESCC immunotherapy predictive biomarkers with high accuracy (≥ 0.90) to predict the immunotherapeutic response, which was validated in the independent cohort.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Carcinoma de Células Escamosas de Esófago/terapia , Proteómica , Carcinoma de Células Escamosas/patología , Neoplasias Esofágicas/terapia , Neoplasias Esofágicas/patología , Biomarcadores , Inmunoterapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA