RESUMEN
The migration of trees induced by climatic warming has been observed at many alpine treelines and boreal-tundra ecotones, but the migration of temperate trees into southern boreal forest remains less well documented. We conducted a field investigation across an ecotone of temperate and boreal forests in northern Greater Khingan Mountains of northeast China. Our analysis demonstrates that Mongolian oak (Quercus mongolica), an important temperate tree species, has migrated rapidly into southern boreal forest in synchrony with significant climatic warming over the past century. The average rate of migration is estimated to be 12.0 ± 1.0 km decade-1 , being slightly slower than the movement of isotherms (14.7 ± 6.4 km decade-1 ). The migration rate of Mongolian oak is the highest observed among migratory temperate trees (average rate 4.0 ± 1.0 km decade-1 ) and significantly higher than the rates of tree migration at boreal-tundra ecotones (0.9 ± 0.4 km decade-1 ) and alpine treelines (0.004 ± 0.003 km decade-1 ). Compared with the coexisting dominant boreal tree species, Dahurian larch (Larix gmelinii), temperate Mongolian oak is observed to have significantly lower capacity for light acquisition, comparable water-use efficiency but stronger capacity to utilize nutrients especially the most limiting nutrient, nitrogen. In the context of climatic warming, and in addition to a high seed dispersal capacity and potential thermal niche differences, the advantage of nutrient utilization, reflected by foliar elementomes and stable nitrogen isotope ratios, is also likely a key mechanism for Mongolian oak to coexist with Dahurian larch and facilitate its migration toward boreal forest. These findings highlight a rapid deborealization of southern Asian boreal forest in response to climatic warming.
Asunto(s)
Larix , Quercus , Taiga , Árboles/fisiología , Tundra , Nitrógeno , Larix/fisiología , BosquesRESUMEN
Nitrogen (N) and phosphorus (P) are the two most important macronutrients supporting forest growth. Unprecedented urbanization has created growing areas of urban forests that provide key ecosystem services for city dwellers. However, the large-scale patterns of soil N and P content remain poorly understood in urban forests. Based on a systematic soil survey in urban forests from nine large cities across eastern China, we examined the spatial patterns and key drivers of topsoil (0-20 cm) total N content, total P content, and N:P ratio. Topsoil total N content was found to change significantly with latitude in the form of an inverted parabolic curve, while total P content showed an opposite latitudinal pattern. Variance partition analysis indicated that regional-scale patterns of topsoil total N and P contents were dominated by climatic drivers and partially regulated by time and pedogenic drivers. Conditional regression analyses showed a significant increase in topsoil total N content with lower mean annual temperature (MAT) and higher mean annual precipitation (MAP), while topsoil total P content decreased significantly with higher MAP. Topsoil total N content also increased significantly with the age of urban park and varied with pre-urban soil type, while no such effects were found for topsoil total P content. Moreover, topsoil N:P ratio showed a latitudinal pattern similar to that of topsoil total N content and also increased significantly with lower MAT and higher MAP. Our findings demonstrate distinct latitudinal trends of topsoil N and P contents and highlight a dominant role of climatic drivers in shaping the large-scale patterns of topsoil nutrients in urban forests.
Asunto(s)
Ecosistema , Fósforo , Fósforo/análisis , Nitrógeno/análisis , Carbono/análisis , Bosques , China , SueloRESUMEN
Atmospheric phosphorus is a vital nutrient for ecosystems whose sources and fate are still debated in the fragile Himalayan region, hindering our comprehension of its local ecological impact. This study provides novel insights into atmospheric phosphorus based on the study of total suspended particulate matter at the Qomolangma station. Contrary to the prevailing assumptions, we show that biomass burning (BB), not mineral dust, dominates total dissolved phosphorus (TDP, bioavailable) deposition in this arid region, especially during spring. While total phosphorus is mainly derived from dust (77% annually), TDP is largely affected by the transport of regional biomass-burning plumes from South Asia. During BB pollution episodes, TDP causing springtime TDP fluxes alone accounts for 43% of the annual budget. This suggests that BB outweighs dust in supplying bioavailable phosphorus, a critical nutrient, required to sustain Himalayas' ecological functions. Overall, this first-hand field evidence refines the regional and global phosphorus budget by demonstrating that BB emission, while still unrecognized, is a significant source of P, even in the remote mountains of the Himalayas. It also reveals the heterogeneity of atmospheric phosphorus deposition in that region, which will help predict changes in the impacted ecosystems as the deposition patterns vary.
Asunto(s)
Contaminantes Atmosféricos , Biomasa , Contaminantes Atmosféricos/análisis , Fósforo , Ecosistema , Himalayas , Polvo/análisis , Material Particulado/análisis , Minerales , Proteínas de Unión al ADN , Monitoreo del Ambiente , Aerosoles/análisisRESUMEN
Rapid urbanization has greatly altered nitrogen (N) cycling from regional to global scales. Compared to natural forests, urban forests receive much more external N inputs with distinctive abundances of stable N isotope (δ15 N). However, the large-scale pattern of soil δ15 N and its imprint on plant δ15 N remain less well understood in urban forests. By collecting topsoil (0-20 cm) and leaf samples from urban forest patches in nine large cities across a north-south transect in eastern China, we analyzed the latitudinal trends of topsoil C:N ratio and δ15 N as well as the correlations between tree leaf δ15 N and topsoil δ15 N. We further explored the spatial variation of topsoil δ15 N explained by corresponding climatic, edaphic, vegetation-associated, and anthropogenic drivers. Our results showed a significant increase of topsoil C:N ratio towards higher latitudes, suggesting lower N availability at higher latitudes. Topsoil δ15 N also increased significantly at higher latitudes, being opposite to the latitudinal trend of soil N availability. The latitudinal trend of topsoil δ15 N was mainly explained by mean annual temperature, mean annual precipitation, and atmospheric deposition of both ammonium and nitrate. Consequently, tree leaf δ15 N showed significant positive correlations with topsoil δ15 N across all sampled plant species and functional types. Our findings reveal a distinctive latitudinal trend of δ15 N in urban forests and highlight an important role of anthropogenic N sources in shaping the large-scale pattern of urban forest 15 N signature.
Asunto(s)
Bosques , Árboles , Isótopos de Nitrógeno , Nitrógeno/análisis , China , SueloRESUMEN
Increased nitrogen (N) inputs are widely recognised to reduce soil respiration (Rs), but how N deposition affects the temporal dynamics of Rs remains unclear. Using a decade-long fertilisation experiment in a boreal larch forest (Larix gmelini) in northeast China, we found that the effects of N additions on Rs showed a temporal shift from a positive effect in the short-term (increased by 8% on average in the first year) to a negative effect over the longer term (decreased by 21% on average in the 11th year). The rates of decrease in Rs for the higher N levels were almost twice as high as those of the low N level. Our results suggest that the reduction in Rs in response to increased N input is accelerated by high-level N additions, and experimental high N applications are likely to overestimate the contribution of N deposition to soil carbon sequestration in a boreal forest.
Asunto(s)
Nitrógeno , Suelo , Carbono , Secuestro de Carbono , China , Bosques , Nitrógeno/análisis , Respiración , TaigaRESUMEN
Nitrogen (N) deposition is known to increase carbon (C) sequestration in N-limited boreal forests. However, the long-term effects of N deposition on ecosystem carbon fluxes have been rarely investigated in old-growth boreal forests. Here we show that decade-long experimental N additions significantly stimulated net primary production (NPP) but the effect decreased with increasing N loads. The effect on soil heterotrophic respiration (Rh) shifted from a stimulation at low-level N additions to an inhibition at higher levels of N additions. Consequently, low-level N additions resulted in a neutral effect on net ecosystem productivity (NEP), due to a comparable stimulating effect on NPP and Rh, while NEP was increased by high-level N additions. Moreover, we found nonlinear temporal responses of NPP, Rh and NEP to low-level N additions. Our findings imply that actual N deposition in boreal forests likely exerts a minor contribution to their soil C storage.
Asunto(s)
Ecosistema , Nitrógeno , Carbono , Bosques , Nitrógeno/análisis , Suelo , TaigaRESUMEN
Although the above and belowground sizes and shapes of plants strongly influence plant competition, community structure, and plant-environment interactions, plant sizes and shapes remain poorly characterized across climate regimes. We investigated relationships among shoot and root system size and climate. We assembled and analyzed, to our knowledge, the largest global database describing the maximum rooting depth, lateral spread, and shoot size of terrestrial plants - more than doubling the Root Systems of Individual Plants database to 5647 observations. Water availability and growth form greatly influence shoot size, and rooting depth is primarily influenced by temperature seasonality. Shoot size is the strongest predictor of lateral spread, with root system diameter being two times wider than shoot width on average for woody plants. Shoot size covaries strongly with rooting system size; however, the geometries of plants differ considerably across climates, with woody plants in more arid climates having shorter shoots, but deeper, narrower root systems. Additionally, estimates of the depth and lateral spread of plant root systems are likely underestimated at the global scale.
Asunto(s)
Raíces de Plantas , Plantas , Clima Desértico , Brotes de la Planta , AguaRESUMEN
Although it is an integral part of global change, most of the research addressing the effects of climate change on forests have overlooked the role of environmental pollution. Similarly, most studies investigating the effects of air pollutants on forests have generally neglected the impacts of climate change. We review the current knowledge on combined air pollution and climate change effects on global forest ecosystems and identify several key research priorities as a roadmap for the future. Specifically, we recommend (1) the establishment of much denser array of monitoring sites, particularly in the South Hemisphere; (2) further integration of ground and satellite monitoring; (3) generation of flux-based standards and critical levels taking into account the sensitivity of dominant forest tree species; (4) long-term monitoring of N, S, P cycles and base cations deposition together at global scale; (5) intensification of experimental studies, addressing the combined effects of different abiotic factors on forests by assuring a better representation of taxonomic and functional diversity across the ~73,000 tree species on Earth; (6) more experimental focus on phenomics and genomics; (7) improved knowledge on key processes regulating the dynamics of radionuclides in forest systems; and (8) development of models integrating air pollution and climate change data from long-term monitoring programs.
Asunto(s)
Contaminación del Aire , Cambio Climático , Contaminación del Aire/efectos adversos , Ecosistema , Bosques , ÁrbolesRESUMEN
Combined effects of cumulative nutrient inputs and biogeochemical processes that occur in freshwater under anthropogenic eutrophication could lead to myriad shifts in nitrogen (N):phosphorus (P) stoichiometry in global freshwater ecosystems, but this is not yet well-assessed. Here we evaluated the characteristics of N and P stoichiometries in bodies of freshwater and their herbaceous macrophytes across human-impact levels, regions and periods. Freshwater and its macrophytes had higher N and P concentrations and lower N : P ratios in heavily than lightly human-impacted environments, further evidenced by spatiotemporal comparisons across eutrophication gradients. N and P concentrations in freshwater ecosystems were positively correlated and N : P was negatively correlated with population density in China. These results indicate a faster accumulation of P than N in human-impacted freshwater ecosystems, which could have large effects on the trophic webs and biogeochemical cycles of estuaries and coastal areas by freshwater loadings, and reinforce the importance of rehabilitating these ecosystems.
Asunto(s)
Ecosistema , Agua Dulce , Actividades Humanas , Nitrógeno/química , Fósforo/química , China , Contaminantes Químicos del Agua , Contaminación del AguaRESUMEN
The functional equilibrium between roots and shoots suggests an intrinsic linkage between belowground and aboveground phenology. However, much less understanding of belowground phenology hinders integrating belowground and aboveground phenology. We measured root respiration (Ra) as a surrogate for root phenology and integrated it with observed leaf phenology and radial growth in a birch (Betula platyphylla)-aspen (Populus davidiana) forest and an adjacent larch (Larix gmelinii) forest in Northeast China. A log-normal model successfully described the seasonal variations of Ra and indicated the initiation, termination and peak date of root phenology. Both root phenology and leaf phenology were highly specific, with a later onset, earlier termination, and shorter period of growing season for the pioneer tree species (birch and aspen) than the dominant tree species (larch). Root phenology showed later initiation, later peak and later termination dates than leaf phenology. An asynchronous correlation of Ra and radial growth was identified with a time lag of approximately 1 month, indicating aprioritization of shoot growth. Furthermore, we found that Ra was strongly correlated with soil temperature and air temperature, while radial growth was only significantly correlated with air temperature, implying a down-regulating effect of temperature. Our results indicate different phenologies between pioneer and dominant species and support a down-regulation hypothesis of plant phenology which can be helpful in understanding forest dynamics in the context of climate change.
Asunto(s)
Cambio Climático , Bosques , Árboles/crecimiento & desarrollo , Árboles/metabolismo , China , Regulación hacia Abajo , Modelos Biológicos , Hojas de la Planta/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Estaciones del Año , Suelo , TemperaturaAsunto(s)
Contaminantes Atmosféricos , Nitrógeno , Monitoreo del Ambiente , Humanos , Estados UnidosAsunto(s)
Atmósfera , Nitrógeno , Contaminantes Atmosféricos , China , Ecosistema , Monitoreo del Ambiente , Humanos , Estados UnidosRESUMEN
Urban greenspaces continue to grow with global urbanization. The global distribution and stock of soil organic carbon (SOC) in urban greenspaces remain largely undescribed and missing in global carbon (C) budgets. Here, we synthesize data of 420 observations from 257 cities in 52 countries to evaluate the global pattern of surface SOC density (0-20 cm depth) in urban greenspaces. Surface SOC density in urban greenspaces increases significantly at higher latitudes and decreases significantly with higher mean annual temperature, stronger temperature and precipitation seasonality, as well as lower urban greenness index. By mapping surface SOC density using a random forest model, we estimate an average SOC density of 55.2 (51.9-58.6) Mg C ha-1 and a SOC stock of 1.46 (1.37-1.54) Pg C in global urban greenspaces. Our findings present a comprehensive assessment of SOC in global urban greenspaces and provide a baseline for future urban soil C assessment under continuing urbanization.
RESUMEN
Increased surface ozone (O3) pollution seriously threatens crop production, and ethylenediurea (EDU) can alleviate crop yield reduction caused by O3. However, the reason for the decrease in grain nitrogen (N) accumulation caused by O3 and whether EDU serves as N fertilizer remain unclear. An experiment was conducted to investigate the impacts of factorial combinations of O3 enrichment (ambient air plus 60 ppb) and EDU (foliage spray with 450 ppm solutions) on N concentration, accumulation and remobilization in hybrid rice seedlings. Compared to ambient condition, elevated O3 significantly inhibited the N accumulation in vegetative organs during anthesis and grain N accumulation during the maturity stage. Elevated O3 significantly decreased the total N accumulation during anthesis and maturity stages, with a greater impact at the latter stage. The decrease in grain N accumulation caused by O3 was attributed to a decrease in N remobilization of vegetative organs during the grain filling period as well as to a decrease in post-anthesis N uptake. However, there was no significant change in the proportion of N remobilization and N uptake in grain N accumulation. The inhibitory effect of O3 on N remobilization in the upper canopy leaves was greater than that in the lower canopy leaves. In addition, elevated O3 increased the N accumulation of panicles at the anthesis stage, mainly by resulting in earlier heading of rice. EDU only increased N accumulation at the maturity stage, which was mainly attributed to an increase in rice biomass by EDU. EDU had no significant effect on N concentration, N remobilization process, and N harvest index. The findings are helpful to better understand the utilization of N fertilizer by rice under O3 pollution, and can also provide a theoretical basis for sustainable nutrient management to alleviate the negative impact of O3 on crop yield and quality.
Asunto(s)
Oryza , Ozono , Grano Comestible , Fertilizantes , Nitrógeno/farmacología , Ozono/farmacologíaRESUMEN
Rapid urbanization has occurred globally and resulted in increasing CO2 emissions from urban areas. Compared to natural forests, urban forests are subject to higher atmospheric CO2 concentrations in view of strong urban-periurban-rural gradients of CO2 emissions. However, relevant insights in the CO2-associated urban imprints on the physiology and growth of regional forests remain lacking. By sampling foliage and tree rings of Chinese pine (Pinus tabuliformis) in the Beijing metropolitan region, China, we explored whether and how urban CO2 emissions affect stable carbon isotope ratios (δ13C) and tree growth spatially and/or temporally. The results indicate a significant decrease in foliar δ13C values towards the urban center and this pattern was mainly explained by the urban-periurban-rural gradients of CO2 emissions as surrogated by trunk road density. Tree-ring δ13C values showed a significant decrease over last four decades and this trend was mainly explained by rising levels of CO2 and secondarily mediated by the variations of aridity index during growing season. Moreover, annual basal area increment of Chinese pine was significantly accelerated during last two decades, being mainly driven by increasing CO2 emissions and secondarily mediated by climate variations. These findings reveal significant CO2-associated imprints of urbanization on plant growth and provide empirical evidences of significant CO2-induced alteration of carbon cycles in urban forests.
Asunto(s)
Dióxido de Carbono , Pinus , Beijing , Carbono , Isótopos de Carbono/análisis , Bosques , Pinus/crecimiento & desarrolloRESUMEN
Nitrogen dioxide (NO2) and sulfur dioxide (SO2) are two major air pollutants in urban environment. Emission reduction policies have thus been implemented to improve urban air quality, especially in the metropolises. However, it remains unclear whether the air concentrations of NO2 and SO2 in and around large cities follow a same spatial pattern and how their characteristics change over time in response to the emission reductions. Using ground-based monitoring datasets of air NO2 and SO2 concentrations in Beijing, China, we tested the hypothesis of urban air pollutant islands and evaluated their seasonal and inter-annual variations during 2015-2022. The results showed that air NO2 concentrations increased significantly towards the urban core, being in line with the hypothesis of urban air pollutant island, while air SO2 concentrations showed no such spatial patterns. The urban air NO2 island varied seasonally, with larger radius and higher air NO2 concentrations in spring and winter. In response to the emission reduction, the annual mean radius of the urban air NO2 island showed a rapid decrease from 45.8 km to zero km during the study period. The annual mean air NO2 concentration at the urban core showed a linear decrease at a rate of 4.5 µg m-3 yr-1. In contrast, air SO2 concentration decreased nonlinearly over time and showed a legacy in comparison to the emission reduction. Our findings suggest different urban-rural gradients of air NO2 and SO2 concentrations and highlight their distinct responses to the regional reductions of anthropogenic emissions.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Dióxido de Nitrógeno/análisis , Beijing , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Dióxido de Azufre/análisis , China , Material Particulado/análisis , Monitoreo del Ambiente/métodosRESUMEN
Larch, a widely distributed tree in boreal Eurasia, is experiencing rapid warming across much of its distribution. A comprehensive assessment of growth on warming is needed to comprehend the potential impact of climate change. Most studies, relying on rigid calendar-based temperature series, have detected monotonic responses at the margins of boreal Eurasia, but not across the region. Here, we developed a method for constructing temporally flexible and physiologically relevant temperature series to reassess growth-temperature relations of larch across boreal Eurasia. Our method appears more effective in assessing the impact of warming on growth than previous methods. Our approach indicates widespread and spatially heterogeneous growth-temperature responses that are driven by local climate. Models quantifying these results project that the negative responses of growth to temperature will spread northward and upward throughout this century. If true, the risks of warming to boreal Eurasia could be more widespread than conveyed from previous works.
Asunto(s)
Larix , Larix/fisiología , Taiga , Árboles , Cambio Climático , Temperatura , BosquesRESUMEN
The concept of critical loads is used in the framework of the Convention on Long-range Transboundary Air Pollution (UNECE) to define thresholds below which no damaging effects on habitats occur based on the latest scientific knowledge. Change-point regression models applied in a Bayesian framework are useful statistical tools to estimate critical empirical loads. While hierarchical study designs are common in ecological research, previous methods to estimate critical loads using change-point regression did not allow to analyse data collected under such a design. This method update provides an implementation of hierarchical data structure by including random effects such as study sites or as in this example tree species within the Bayesian approach of change-point regression models using two different approaches. The example data set is an European wide gradient study of the impact of climate change and air pollution on forest tree health assessed by foliar nutrient status of nitrogen (N) to phosphorus (P) from 10 different conifer tree species originated from 88 forest sites and 9 countries covering 22 years (1995-2017). Both modelling approaches using JAGS and Bayesian Regression Models using 'Stan' (brms) resulted in reasonable and similar estimations of the critical empirical load for nitrogen (CLempN) for temperate forests. These methodological examples of using different approaches of Bayesian change-point regression models dealing with random effects could prove useful to infer CLempN for other ecosystems and long-term data sets.â¢Hierarchical change-point regression models are suitable for estimating critical empirical loads.â¢The Bayesian framework of these models provides the inclusion of the current critical load and various confounding or modifying variables.â¢Here we present two ways of implementing hierarchical data sets in Bayesian change-point regression models using JAGS and brms.
RESUMEN
The impacts of enhanced nitrogen (N) deposition on the global forest carbon (C) sink and other ecosystem services may depend on whether N is deposited in reduced (mainly as ammonium) or oxidized forms (mainly as nitrate) and the subsequent fate of each. However, the fates of the two key reactive N forms and their contributions to forest C sinks are unclear. Here, we analyze results from 13 ecosystem-scale paired 15N-labelling experiments in temperate, subtropical, and tropical forests. Results show that total ecosystem N retention is similar for ammonium and nitrate, but plants take up more labelled nitrate ([Formula: see text]%) ([Formula: see text]) than ammonium ([Formula: see text]%) while soils retain more ammonium ([Formula: see text]%) than nitrate ([Formula: see text]%). We estimate that the N deposition-induced C sink in forests in the 2010s is [Formula: see text] Pg C yr-1, higher than previous estimates because of a larger role for oxidized N and greater rates of global N deposition.
Asunto(s)
Compuestos de Amonio/análisis , Secuestro de Carbono/fisiología , Restauración y Remediación Ambiental , Bosques , Nitratos/análisis , Árboles/metabolismo , Ambiente , Isótopos de Nitrógeno/química , Óxidos de Nitrógeno/análisis , Suelo/químicaRESUMEN
Nitrogen (N) and phosphorus (P) are essential nutrients that widely limit plant growth in global terrestrial ecosystems. Rising atmospheric CO2 concentration generally stimulates terrestrial net primary productivity and consequently may cause or aggravate N and P limitation due to a dilution effect, but the spatial variation of temporal trends in N versus P limitation and its key regulating factors is poorly understood. Using the leaf N:P ratio of 15 dominant tree species as an indicator, we analysed the spatial variation of plot-level shift towards N or P limitation across 163 European forest plots during 1995-2017. Phosphorus limitation increased from 25% to 33% of the studied plots between 1995-1997 and 2015-2017, while N limitation occurred in a negligible number of plots. A major proportion (56%) of the plots showed no significant trend in leaf N:P ratio, implying no shifts in N versus P limitation status. In the remaining plots, 38% of the plots showed a significant increase of leaf N:P ratio and only 6% of the plots showed a significant decrease of leaf N:P ratio. The spatial variation in the rate of decrease in leaf N:P ratio was associated with a significant decrease in leaf N concentration and mainly explained by the rate of decrease in N deposition. In contrast, the spatial variation in the rate of increase in leaf N:P ratio was associated with a significant decrease in leaf P concentration and mainly explained by forest category (broadleaf vs. conifer), mean annual temperature and soil C:N ratio. Our findings highlight a remarkable spatial divergence in temporal trends of nutrient limitation status across European forests over the past two decades, but overall, P is becoming more limiting versus N, especially in broadleaved forests.